Verlagslink DOI: 10.1007/s10915-018-0806-7
Titel: Optimal Shape Design for the p-Laplacian Eigenvalue Problem
Sprache: Englisch
Autor/Autorin: Mohammadi, Seyyed Abbas 
Bozorgnia, Farid 
Voß, Heinrich 
Schlagwörter: Eigenvalue optimization; p-Laplacian; Rearrangement algorithm
Erscheinungs­datum: 15-Feb-2019
Quellenangabe: Journal of Scientific Computing 78 (2): 1231-1249 (2019-02-15)
Zusammenfassung (englisch): 
In this paper, a shape optimization problem corresponding to the p-Laplacian operator is studied. Given a density function in a rearrangement class generated by a step function, find the density such that the principal eigenvalue is as small as possible. Considering a membrane of known fixed mass and with fixed boundary of prescribed shape consisting of two different materials, our results determine the way to distribute these materials such that the basic frequency of the membrane is minimal. We obtain some qualitative aspects of the optimizer and then we determine nearly optimal sets which are approximations of the minimizer for specific ranges of parameters values. A numerical algorithm is proposed to derive the optimal shape and it is proved that the numerical procedure converges to a local minimizer. Numerical illustrations are provided for different domains to show the efficiency and practical suitability of our approach.
URI: http://hdl.handle.net/11420/10869
ISSN: 0885-7474
Zeitschrift: Journal of scientific computing 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

37
Letzte Woche
0
Letzten Monat
checked on 04.10.2022

SCOPUSTM   
Zitate

4
Letzte Woche
0
Letzten Monat
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.