Publisher DOI: 10.1007/s00158-021-03030-x
arXiv ID: 2103.14735v1
Title: A novel p-harmonic descent approach applied to fluid dynamic shape optimization
Language: English
Authors: Müller, Peter Marvin  
Kühl, Niklas  
Siebenborn, Martin 
Deckelnick, Klaus 
Hinze, Michael 
Rung, Thomas  
Keywords: Adjoint optimization;p-Laplace relaxation;Shape optimization;W -steepest descent 1 , ∞
Issue Date: 2021
Source: Structural and Multidisciplinary Optimization : (2021) (in press; CC BY 4.0)
Journal: Structural and multidisciplinary optimization 
Abstract (english): 
We introduce a novel method for the implementation of shape optimization for non-parameterized shapes in fluid dynamics applications, where we propose to use the shape derivative to determine deformation fields with the help of the p- Laplacian for p> 2. This approach is closely related to the computation of steepest descent directions of the shape functional in the W1,∞- topology and refers to the recent publication Deckelnick et al. (A novel W1,∞ approach to shape optimisation with Lipschitz domains, 2021), where this idea is proposed. Our approach is demonstrated for shape optimization related to drag-minimal free floating bodies. The method is validated against existing approaches with respect to convergence of the optimization algorithm, the obtained shape, and regarding the quality of the computational grid after large deformations. Our numerical results strongly indicate that shape optimization related to the W1,∞-topology—though numerically more demanding—seems to be superior over the classical approaches invoking Hilbert space methods, concerning the convergence, the obtained shapes and the mesh quality after large deformations, in particular when the optimal shape features sharp corners.
ISSN: 1615-147X
Institute: Fluiddynamik und Schiffstheorie M-8 
Document Type: Article
Project: Hydrodynamische Widerstandsoptimierung von Schiffsrümpfen 
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

checked on Nov 27, 2021

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.