Verlagslink DOI: 10.1007/s43034-021-00154-5
arXiv ID: 1910.01952
Titel: Extension of vector-valued functions and weak-strong principles for differentiable functions of finite order
Sprache: Englisch
Autor/Autorin: Kruse, Karsten  
Schlagwörter: extension; vector-valued; epsilon-product; weight; weak-strong principle
Erscheinungs­datum: Jan-2022
Verlag: Springer International Publishing
Quellenangabe: Annals of Functional Analysis 13 (1): 1-26 (2022-02)
Zusammenfassung (englisch): 
In this paper we study the problem of extending functions with values in a locally convex Hausdorff space E over a field K, which has weak extensions in a weighted Banach space Fν(Ω,K) of scalar-valued functions on a set Ω, to functions in a vector-valued counterpart Fν(Ω,E) of Fν(Ω,K). Our findings rely on a description of vector-valued functions as continuous linear operators and extend results of Frerick, Jordá and Wengenroth. As an application we derive weak-strong principles for continuously partially differentiable functions of finite order and vector-valued versions of Blaschke’s convergence theorem for several spaces.
URI: http://hdl.handle.net/11420/11248
DOI: 10.15480/882.4017
ISSN: 2008-8752
Zeitschrift: Annals of functional analysis 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Projekt: Projekt DEAL 
Peer Reviewed: Ja
Lizenz: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Enthalten in den Sammlungen:Publications with fulltext

Zur Langanzeige

Seitenansichten

119
Letzte Woche
1
Letzten Monat
checked on 01.10.2022

Download(s)

92
checked on 01.10.2022

Google ScholarTM

Prüfe

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons