TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
 
Options

Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models

Citation Link: https://doi.org/10.15480/882.4040
Publikationstyp
Journal Article
Date Issued
2021-12
Sprache
English
Author(s)
Schiessler, Elisabeth J.  
Würger, Tim  orcid-logo
Lamaka, Sviatlana V.  
Meißner, Robert  orcid-logo
Cyron, Christian J.  
Zheludkevich, Mikhail L.  
Feiler, Christian  
Aydin, Roland C.  
Institut
Kontinuums- und Werkstoffmechanik M-15  
Molekulardynamische Simulation weicher Materie M-EXK2  
Kunststoffe und Verbundwerkstoffe M-11  
TORE-DOI
10.15480/882.4040
TORE-URI
http://hdl.handle.net/11420/11290
Journal
npj computational materials  
Volume
7
Issue
1
Article Number
193
Citation
npj Computational Materials 7 (1): 193 (2021-12)
Publisher DOI
10.1038/s41524-021-00658-7
Scopus ID
2-s2.0-85120625907
Publisher
Nature Publ. Group
The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.
Subjects
MLE@TUHH
DDC Class
004: Informatik
570: Biowissenschaften, Biologie
Funding(s)
SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3  
Funding Organisations
Deutscher Akademischer Austauschdienst (DAAD)  
Deutsche Forschungsgemeinschaft (DFG)  
More Funding Information
Funding by the Helmholtz Association is gratefully acknowledged. T.W. and C.F. gratefully acknowledge funding by the Deutscher Akademischer Austauschdienst (DAAD, German Academic Exchange Service) via Projektnummer 57511455. R.M.
gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft (D.F.G., German Research Foundation) via Projektnummer 192346071-SFB 986 and Projektnummer 390794421-GRK 2462.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s41524-021-00658-7.pdf

Size

1.79 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback