Publisher DOI: 10.1109/EPEPS51341.2021.9609190
Title: Evaluation of Support Vector Machines for PCB based Power Delivery Network Classification
Language: English
Authors: Schierholz, Morten 
Hassab, Youcef 
Yang, Cheng 
Schuster, Christian 
Issue Date: Oct-2021
Source: IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS 2021)
Abstract (english): 
In this paper the performance of support vector machines (SVMs) is investigated to classify printed circuit board (PCB) based power delivery networks (PDNs). For different decoupling capacitor (decap) distributions on a PCB the impedance of the PDN is evaluated. The target impedance (TI) is used as separation condition of the two classes meeting or violating the TI. It is shown that the preprocessing of the PCB parameters and decap distributions have a strong impact on the prediction accuracy of SVMs. Furthermore, variations of the PCB structure with respect to the geometry are investigated. It is shown using extended SVMs with geometry features as additional input feature that it is possible to achieve similar prediction accuracies in comparison with a collaboration of multiple SVMs. Finally the performance of power integrity (PI) classifications by SVMs in comparison with artificial neural networks (ANNs) is discussed.
Conference: IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS 2021) 
URI: http://hdl.handle.net/11420/11472
ISBN: 978-1-6654-4269-5
Institute: Theoretische Elektrotechnik E-18 
Document Type: Chapter/Article (Proceedings)
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

17
checked on Jan 20, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.