Verlagslink DOI: 10.1016/j.procs.2021.11.055
Titel: Maximum size of r-cross t-intersecting families
Sprache: Englisch
Autor/Autorin: Gupta, Pranshu 
Mogge, Yannick 
Piga, Simón 
Schülke, Bjarne 
Schlagwörter: Erdos-Ko-Rado; Extremal set theory; Hilton-Milner; intersecting families
Erscheinungs­datum: Mai-2021
Quellenangabe: 11th Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2021)
Zusammenfassung (englisch): 
Given r families of subsets of a fixed n-set, we say that they are r-cross t-intersecting if for every choice of representatives, exactly one from each family, the common intersection of these representatives is of size at least t. We obtain a generalisation of a result by Hilton and Milner on cross intersecting families. In particular, we determine the maximum possible sum of the sizes of non-empty r-cross t-intersecting families in the case when all families are k-uniform and in the case when they are arbitrary subfamilies of the power set. Only some special cases of these results had been proved before. The method we use also yields more general results concerning measures of families instead of their sizes.
Konferenz: 11th Latin and American Algorithms, Graphs and Optimization Symposium, LAGOS 2021 
URI: http://hdl.handle.net/11420/11551
ISSN: 1877-0509
Zeitschrift: Procedia computer science 
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Konferenzband)
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

51
Letzte Woche
1
Letzten Monat
checked on 04.10.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.