Publisher DOI: 10.1016/j.ces.2021.117366
Title: Minimizing gas leakages in a system of coupled fluidized bed reactors for chemical looping combustion
Language: English
Authors: Lindmüller, Lennard  
Haus, Johannes 
Ramesh Kumar Nair, Arun 
Heinrich, Stefan 
Keywords: Chemical looping combustion; Circulating fluidized bed; Gas leakage; Loop seal; Pressure drop analysis; Tracer gas
Issue Date: 15-Mar-2022
Source: Chemical Engineering Science 250: 117366 (2022-03-15)
Abstract (english): 
Chemical Looping Combustion (CLC) is a technology to generate a pure stream of CO2 during the combustion of fossil or renewable fuels for power generation. This is carried out in a system of interconnected fluidized bed reactors, at least one so-called air reactor and a fuel reactor. Gas leakages are a major problem in those CLC systems as undesired gases in the exhaust can make the later sequestration more expensive and might lead to further gas cleaning. Therefore, the off-gas of the fuel reactor, where the fuel is mainly converted, should be as pure as possible. In those interconnected fluidized beds, the loop seals or so-called siphons should prevent the gas leakage from one side to the other. The present work focuses on the pressure conditions inside an experimental 25 kWth pilot scale fluidized bed reactor system for CLC to minimize gas leakage between the single reactors. The system consists of a riser air reactor and a two-stage bubbling fluidized bed fuel reactor system. By using CO2 as tracer gas at different positions, the gas distribution from the two loop seals through the system as well as the leakage flow from the air reactor via the cyclone and loop seal to the fuel reactor is analyzed. From a detailed experimental and sensitivity analysis of the system behavior in different operation conditions, measures to minimize gas leakage are developed. A key factor for the understanding of the gas leakages in the system was derived from pressure drop analysis of 23 pressure ports. Each process unit is examined and design criteria for such systems of interconnected fluidized beds are derived.
ISSN: 0009-2509
Journal: Chemical engineering science 
Institute: Feststoffverfahrenstechnik und Partikeltechnologie V-3 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Apr 1, 2023


Last Week
Last month
checked on Jun 30, 2022

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.