TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Linking process-property relationships for multicomponent agglomerates using DEM-ANN-PBM coupling
 
Options

Linking process-property relationships for multicomponent agglomerates using DEM-ANN-PBM coupling

Publikationstyp
Journal Article
Date Issued
2022-01
Author(s)
Dosta, Maksym  
Tsz Tung, Chan 
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Mehrskalensimulation von Feststoffsystemen V-EXK1  
TORE-URI
http://hdl.handle.net/11420/11733
Journal
Powder technology  
Volume
398
Article Number
117156
Citation
Powder Technology 398: 117156 (2022-01)
Publisher DOI
10.1016/j.powtec.2022.117156
Scopus ID
2-s2.0-85124296233
To improve predictivity of macroscale flowsheet models and to establish a link between process conditions, material microstructure and product properties, a data-driven strategy is proposed and applied for continuous particle formulation process. A discrete element method and mesh-free bonded-particle model are used to analyze mechanical behavior of multicomponent agglomerates at uni-axial compression tests. The DEM calculations are performed for varied input parameters to create a database containing information about fracture behavior of agglomerates. The final database is used to build an artificial neural network (ANN) and to link structure-property relationships: from known properties of single components and known microstructure to predict macro-mechanical agglomerate properties. Afterward, the formulated ANN is coupled to the population balance model (PBM) to perform modeling of continuous process where the transient change of particle size distribution in the plant is described. The results demonstrate that the proposed strategy can be efficiently applied to link process-property relationships.
Subjects
Artificial Neural Network (ANN)
Data-driven simulation
Discrete Element Method (DEM)
Multicomponent agglomerates
Population Balance Model (PBM)
Funding(s)
Graduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen  
Integrierte Prozesssimulation der pulvermetallurgischen Herstellung am Beispiel von Porzellan-Fliesen  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback