Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4172
Publisher DOI: 10.1007/978-3-030-89397-2_3
Title: The time derivative
Language: English
Authors: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Issue Date: 28-Sep-2021
Publisher: Springer
Source: Operator Theory: Advances and Applications 287: 31-49 (2022-01-01)
Abstract (english): 
It is the aim of this chapter to define a derivative operator on a suitable L2-space, which will be used as the derivative with respect to the temporal variable in our applications. As we want to deal with Hilbert space-valued functions, we start by introducing the concept of Bochner–Lebesgue spaces, which generalises the classical scalar-valued Lp-spaces to the Banach space-valued case.
URI: http://hdl.handle.net/11420/11745
DOI: 10.15480/882.4172
ISBN: 978-3-030-89397-2
978-3-030-89396-5
Institute: Mathematik E-10 
Document Type: Chapter (Book)
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Part of Series: Operator theory 
Volume number: 287
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_TheTimeDerivative.pdfVerlags-PDF322,2 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

37
Last Week
0
Last month
checked on Jun 27, 2022

Download(s)

10
checked on Jun 27, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons