Verlagslink DOI: 10.1007/978-3-030-89397-2_5
Titel: The Fourier–Laplace transformation and material law operators
Sprache: Englisch
Autor/Autorin: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Erscheinungs­datum: 2022
Verlag: Springer
Quellenangabe: Operator Theory: Advances and Applications 287: 67-83 (2022)
Zusammenfassung (englisch): 
In this chapter we introduce the Fourier–Laplace transformation and use it to define operator-valued functions of ∂t,ν; the so-called material law operators. These operators will play a crucial role when we deal with partial differential equations. In the equations of classical mathematical physics, like the heat equation, wave equation or Maxwell’s equation, the involved material parameters, such as heat conductivity or permeability of the underlying medium, are incorporated within these operators. Hence, these operators are also called “material law operators”. We start our chapter by defining the Fourier transformation and proving Plancherel’s theorem in the Hilbert space-valued case, which states that the Fourier transformation defines a unitary operator on L2(ℝ; H).
URI: http://hdl.handle.net/11420/11747
DOI: 10.15480/882.4174
ISBN: 978-3-030-89397-2
978-3-030-89396-5
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Buch)
Lizenz: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Teil der Schriftenreihe: Operator theory 
Bandangabe: 287
Enthalten in den Sammlungen:Publications with fulltext

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Seifert2022_Chapter_TheFourierLaplaceTransformatio.pdfVerlags-PDF331,12 kBAdobe PDFÖffnen/Anzeigen
Miniaturbild
Zur Langanzeige

Seitenansichten

73
Letzte Woche
2
Letzten Monat
checked on 04.10.2022

Download(s)

42
checked on 04.10.2022

Google ScholarTM

Prüfe

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons