Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4175
DC FieldValueLanguage
dc.contributor.authorSeifert, Christian-
dc.contributor.authorTrostorff, Sascha-
dc.contributor.authorWaurick, Marcus-
dc.date.accessioned2022-02-24T08:12:54Z-
dc.date.available2022-02-24T08:12:54Z-
dc.date.issued2021-09-28-
dc.identifier.citationOperator Theory: Advances and Applications 287: 103-117 (2022-01-01)de_DE
dc.identifier.isbn978-3-030-89397-2de_DE
dc.identifier.isbn978-3-030-89396-5de_DE
dc.identifier.urihttp://hdl.handle.net/11420/11749-
dc.description.abstractThis chapter is devoted to a small tour through a variety of evolutionary equations. More precisely, we shall look into the equations of poro-elastic media, (time-)fractional elasticity, thermodynamic media with delay as well as visco-elastic media. The discussion of these examples will be similar to that of the examples in the previous chapter in the sense that we shall present the equations first, reformulate them suitably and then apply the solution theory to them. The study of visco-elastic media within the framework of partial integro-differential equations will be carried out in the exercises section.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleExamples of evolutionary equationsde_DE
dc.typeinBookde_DE
dc.identifier.doi10.15480/882.4175-
dc.type.dinibookPart-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0173057-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThis chapter is devoted to a small tour through a variety of evolutionary equations. More precisely, we shall look into the equations of poro-elastic media, (time-)fractional elasticity, thermodynamic media with delay as well as visco-elastic media. The discussion of these examples will be similar to that of the examples in the previous chapter in the sense that we shall present the equations first, reformulate them suitably and then apply the solution theory to them. The study of visco-elastic media within the framework of partial integro-differential equations will be carried out in the exercises section.de_DE
tuhh.publisher.doi10.1007/978-3-030-89397-2_7-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.4175-
tuhh.type.opusInBuch (Kapitel / Teil einer Monographie)-
dc.type.driverbookPart-
dc.type.casraiBook Chapter-
tuhh.container.startpage103de_DE
tuhh.container.endpage117de_DE
dc.rights.nationallicensefalsede_DE
tuhh.relation.ispartofseriesOperator theoryde_DE
tuhh.relation.ispartofseriesnumber287de_DE
dc.identifier.scopus2-s2.0-85124396159de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
datacite.resourceTypeBook Chapter-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidSeifert, Christian-
item.creatorOrcidTrostorff, Sascha-
item.creatorOrcidWaurick, Marcus-
item.mappedtypeinBook-
item.tuhhseriesidOperator theory-
item.creatorGNDSeifert, Christian-
item.creatorGNDTrostorff, Sascha-
item.creatorGNDWaurick, Marcus-
item.seriesrefOperator theory;287-
item.fulltextWith Fulltext-
item.openairetypeinBook-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.orcid0000-0003-4498-3574-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_ExamplesOfEvolutionaryEquation.pdfVerlags-PDF295,26 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

46
Last Week
1
Last month
checked on Aug 8, 2022

Download(s)

23
checked on Aug 8, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons