Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4177
Publisher DOI: 10.1007/978-3-030-89397-2_9
Title: Initial value problems and extrapolation spaces
Language: English
Authors: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Issue Date: 28-Sep-2021
Publisher: Springer
Source: Operator Theory: Advances and Applications 287: 131-148 (2022-01-01)
Abstract (english): 
Up until now we have dealt with evolutionary equations of the form (∂t,νM(∂t,ν)+A¯)U=F (∂ t,ν M(∂ t,ν )+A)U=F for some given F∈ L2,ν(ℝ; H) for some Hilbert space H, a skew-selfadjoint operator A in H and a material law M defined on a suitable half-plane satisfying an appropriate positive definiteness condition with ν∈ ℝ chosen suitably large. Under these conditions, we established that the solution operator,, is eventually independent of ν and causal; that is, if F = 0 on (− ∞, a] for some a∈ ℝ, then so too is U.
URI: http://hdl.handle.net/11420/11751
DOI: 10.15480/882.4177
ISBN: 978-3-030-89397-2
978-3-030-89396-5
Institute: Mathematik E-10 
Document Type: Chapter (Book)
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Part of Series: Operator theory 
Volume number: 287
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_InitialValueProblemsAndExtrapo.pdfVerlags-PDF328,15 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

40
Last Week
1
Last month
checked on Jul 5, 2022

Download(s)

18
checked on Jul 5, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons