Please use this identifier to cite or link to this item:
Publisher DOI: 10.1007/978-3-030-89397-2_9
Title: Initial value problems and extrapolation spaces
Language: English
Authors: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Issue Date: 28-Sep-2021
Publisher: Springer
Source: Operator Theory: Advances and Applications 287: 131-148 (2022-01-01)
Abstract (english): 
Up until now we have dealt with evolutionary equations of the form (∂t,νM(∂t,ν)+A¯)U=F (∂ t,ν M(∂ t,ν )+A)U=F for some given F∈ L2,ν(ℝ; H) for some Hilbert space H, a skew-selfadjoint operator A in H and a material law M defined on a suitable half-plane satisfying an appropriate positive definiteness condition with ν∈ ℝ chosen suitably large. Under these conditions, we established that the solution operator,, is eventually independent of ν and causal; that is, if F = 0 on (− ∞, a] for some a∈ ℝ, then so too is U.
DOI: 10.15480/882.4177
ISBN: 978-3-030-89397-2
Institute: Mathematik E-10 
Document Type: Chapter (Book)
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Part of Series: Operator theory 
Volume number: 287
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_InitialValueProblemsAndExtrapo.pdfVerlags-PDF328,15 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Jul 5, 2022


checked on Jul 5, 2022

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons