Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4178
Publisher DOI: 10.1007/978-3-030-89397-2_10
Title: Differential algebraic equations
Language: English
Authors: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Issue Date: 2022
Publisher: Springer
Source: Operator Theory: Advances and Applications 287: 149-165 (2022)
Abstract (english): 
Let H be a Hilbert space and ν∈ ℝ. We saw in the previous chapter how initial value problems can be formulated within the framework of evolutionary equations. More precisely, we have studied problems of the form {(∂t,νM0+M1+A)U=0on(0,∞),M0U(0+)=M0U0 $$\displaystyle \begin{aligned} \begin {cases} \left (\partial _{t,\nu }M_{0}+M_{1}+A\right )U=0 & \text{ on }\left (0,\infty \right ),\\ M_{0}U(0{\scriptstyle {+}})=M_{0}U_{0} \end {cases} \end{aligned} $$ for U0 ∈ H, M0, M1 ∈ L(H) and A: dom (A) ⊆ H→ H skew-selfadjoint; that is, we have considered material laws of the form M(z): =M0+z−1M1(z∈ℂ∖{0}). $$\displaystyle M(z)\mathrel{\mathop:}= M_{0}+z^{-1}M_{1}\quad (z\in \mathbb {C}\setminus \{0\}). $$
URI: http://hdl.handle.net/11420/11752
DOI: 10.15480/882.4178
ISBN: 978-3-030-89397-2
978-3-030-89396-5
Institute: Mathematik E-10 
Document Type: Chapter (Book)
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Part of Series: Operator theory 
Volume number: 287
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_DifferentialAlgebraicEquations.pdfVerlags-PDF344,57 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

91
Last Week
0
Last month
checked on Jun 9, 2023

Download(s)

86
checked on Jun 9, 2023

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons