TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Differential algebraic equations
 
Options

Differential algebraic equations

Citation Link: https://doi.org/10.15480/882.4178
Publikationstyp
Book Part
Date Issued
2022
Sprache
English
Author(s)
Seifert, Christian  orcid-logo
Trostorff, Sascha  
Waurick, Marcus  
Institut
Mathematik E-10  
TORE-DOI
10.15480/882.4178
TORE-URI
http://hdl.handle.net/11420/11752
First published in
Operator theory  
Number in series
287
Start Page
149
End Page
165
Citation
Operator Theory: Advances and Applications 287: 149-165 (2022)
Publisher DOI
10.1007/978-3-030-89397-2_10
Scopus ID
2-s2.0-85124417128
Publisher
Springer
Let H be a Hilbert space and ν∈ ℝ. We saw in the previous chapter how initial value problems can be formulated within the framework of evolutionary equations. More precisely, we have studied problems of the form {(∂t,νM0+M1+A)U=0on(0,∞),M0U(0+)=M0U0 $$\displaystyle \begin{aligned} \begin {cases} \left (\partial _{t,\nu }M_{0}+M_{1}+A\right )U=0 & \text{ on }\left (0,\infty \right ),\\ M_{0}U(0{\scriptstyle {+}})=M_{0}U_{0} \end {cases} \end{aligned} $$ for U0 ∈ H, M0, M1 ∈ L(H) and A: dom (A) ⊆ H→ H skew-selfadjoint; that is, we have considered material laws of the form M(z): =M0+z−1M1(z∈ℂ∖{0}). $$\displaystyle M(z)\mathrel{\mathop:}= M_{0}+z^{-1}M_{1}\quad (z\in \mathbb {C}\setminus \{0\}). $$
DDC Class
510: Mathematik
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Seifert2022_Chapter_DifferentialAlgebraicEquations.pdf

Size

344.57 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback