Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4178
Publisher DOI: | 10.1007/978-3-030-89397-2_10 | Title: | Differential algebraic equations | Language: | English | Authors: | Seifert, Christian ![]() Trostorff, Sascha Waurick, Marcus |
Issue Date: | 2022 | Publisher: | Springer | Source: | Operator Theory: Advances and Applications 287: 149-165 (2022) | Abstract (english): | Let H be a Hilbert space and ν∈ ℝ. We saw in the previous chapter how initial value problems can be formulated within the framework of evolutionary equations. More precisely, we have studied problems of the form {(∂t,νM0+M1+A)U=0on(0,∞),M0U(0+)=M0U0 $$\displaystyle \begin{aligned} \begin {cases} \left (\partial _{t,\nu }M_{0}+M_{1}+A\right )U=0 & \text{ on }\left (0,\infty \right ),\\ M_{0}U(0{\scriptstyle {+}})=M_{0}U_{0} \end {cases} \end{aligned} $$ for U0 ∈ H, M0, M1 ∈ L(H) and A: dom (A) ⊆ H→ H skew-selfadjoint; that is, we have considered material laws of the form M(z): =M0+z−1M1(z∈ℂ∖{0}). $$\displaystyle M(z)\mathrel{\mathop:}= M_{0}+z^{-1}M_{1}\quad (z\in \mathbb {C}\setminus \{0\}). $$ |
URI: | http://hdl.handle.net/11420/11752 | DOI: | 10.15480/882.4178 | ISBN: | 978-3-030-89397-2 978-3-030-89396-5 |
Institute: | Mathematik E-10 | Document Type: | Chapter (Book) | License: | ![]() |
Part of Series: | Operator theory | Volume number: | 287 |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Seifert2022_Chapter_DifferentialAlgebraicEquations.pdf | Verlags-PDF | 344,57 kB | Adobe PDF | View/Open![]() |
Page view(s)
91
Last Week
0
0
Last month
checked on Jun 9, 2023
Download(s)
86
checked on Jun 9, 2023
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License