  Verlagslink DOI: 10.1007/978-3-030-89397-2_15 Titel: Maximal regularity Sprache: Englisch Autor/Autorin: Seifert, Christian Trostorff, Sascha Waurick, Marcus Erscheinungs­datum: 2022 Verlag: Springer Quellenangabe: Operator Theory: Advances and Applications 287: 243-258 (2022) Zusammenfassung (englisch): In this chapter, we address the issue of maximal regularity. More precisely, we provide a criterion on the ‘structure’ of the evolutionary equation (∂t,νM(∂t,ν)+A¯)U=F $$\displaystyle \left (\overline {\partial _{t,\nu }M(\partial _{t,\nu })+A}\right )U=F$$ in question and the right-hand side F in order to obtain U∈ dom (∂t,νM(∂t,ν) ) ∩ dom (A). If F∈ L2,ν(ℝ; H), U∈ dom (∂t,νM(∂t,ν) ) ∩ dom (A) is the optimal regularity one could hope for. However, one cannot expect U to be as regular since (∂t,νM(∂t,ν) + A) is simply not closed in general. Hence, in all the cases where (∂t,νM(∂t,ν) + A) is not closed, the desired regularity property does not hold for F∈ L2,ν(ℝ; H). However, note that by Picard’s theorem, F∈ dom (∂t,ν) implies the desired regularity property for U given the positive definiteness condition for the material law is satisfied and A is skew-selfadjoint. In this case, one even has U∈ dom (∂t,ν) ∩ dom (A), which is more regular than expected. Thus, in the general case of an unbounded, skew-selfadjoint operator A neither the condition F∈ dom (∂t,ν) nor F∈ L2,ν(ℝ; H) yields precisely the regularity U∈ dom (∂t,νM(∂t,ν) ) ∩ dom (A) since dom(∂t,ν)∩dom(A)⊆dom(∂t,νM(∂t,ν))∩dom(A)⊆dom(∂t,νM(∂t,ν)+A¯), $$\displaystyle \operatorname {dom}(\partial _{t,\nu })\cap \operatorname {dom}(A)\subseteq \operatorname {dom}(\partial _{t,\nu }M(\partial _{t,\nu }))\cap \operatorname {dom}(A)\subseteq \operatorname {dom}(\overline {\partial _{t,\nu }M(\partial _{t,\nu })+A}),$$ where the inclusions are proper in general. It is the aim of this chapter to provide an example case, where less regularity of F actually yields more regularity for U. If one focusses on time-regularity only, this improvement of regularity is in stark contrast to the general theory developed in the previous chapters. Indeed, in this regard, one can coin the (time) regularity asserted in Picard’s theorem as “U is as regular as F”. For a more detailed account on the usual perspective of maximal regularity (predominantly) for parabolic equations, we refer to the Comments section of this chapter. URI: http://hdl.handle.net/11420/11755 DOI: 10.15480/882.4181 ISBN: 978-3-030-89397-2978-3-030-89396-5 Institut: Mathematik E-10 Dokumenttyp: Kapitel (Buch) Lizenz: CC BY 4.0 (Attribution) Teil der Schriftenreihe: Operator theory Bandangabe: 287 Enthalten in den Sammlungen: Publications with fulltext

#### Seitenansichten

55
Letzte Woche
0
Letzten Monat
checked on 01.10.2022

13
checked on 01.10.2022 Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons 