Verlagslink DOI: 10.1007/978-3-030-89397-2_16
Titel: Non-autonomous evolutionary equations
Sprache: Englisch
Autor/Autorin: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Erscheinungs­datum: 2022
Verlag: Springer
Quellenangabe: Operator Theory: Advances and Applications 287 : 259-273 (2022)
Zusammenfassung (englisch): 
Previously, we focussed on evolutionary equations of the form (∂t,νM(∂t,ν)+A¯)U=F. $$\displaystyle \left (\overline {\partial _{t,\nu }M(\partial _{t,\nu })+A}\right )U=F. $$ In this chapter, where we turn back to well-posedness issues, we replace the material law operator M(∂t,ν), which is invariant under translations in time, by an operator of the form ℳ+∂t,ν−1N, $$\displaystyle \mathcal {M}+\partial _{t,\nu }^{-1}\mathcal {N}, $$ where both ℳ and N are bounded linear operators in L2,ν(ℝ; H). Thus, it is the aim in the following to provide criteria on ℳ and N under which the operator ∂t,νℳ+N+A $$\displaystyle \partial _{t,\nu }\mathcal {M}+\mathcal {N}+A $$ is closable with continuous invertible closure in L2,ν(ℝ; H). In passing, we shall also replace the skew-selfadjointness of A by a suitable real part condition. Under additional conditions on ℳ and N, we will also see that the solution operator is causal. Finally, we will put the autonomous version of Picard’s theorem into perspective of the non-autonomous variant developed here.
URI: http://hdl.handle.net/11420/11756
DOI: 10.15480/882.4182
ISBN: 978-3-030-89397-2
978-3-030-89396-5
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Buch)
Lizenz: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Teil der Schriftenreihe: Operator theory 
Bandangabe: 287
Enthalten in den Sammlungen:Publications with fulltext

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Seifert2022_Chapter_Non-AutonomousEvolutionaryEqua.pdfVerlags-PDF291,4 kBAdobe PDFÖffnen/Anzeigen
Miniaturbild
Zur Langanzeige

Seitenansichten

60
Letzte Woche
0
Letzten Monat
checked on 01.10.2022

Download(s)

14
checked on 01.10.2022

Google ScholarTM

Prüfe

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons