Verlagslink DOI: 10.1007/978-3-030-95459-8_44
Titel: Combining Coarse and Fine Physics for Manipulation Using Parallel-in-Time Integration
Sprache: Englisch
Autor/Autorin: Agboh, Wisdom 
Ruprecht, Daniel  
Dogar, Mehmet R. 
Schlagwörter: Model-predictive-control; Physics-based manipulation
Erscheinungs­datum: Okt-2019
Quellenangabe: 17th International Symposium of Robotics Research (ISRR 2019)
Zusammenfassung (englisch): 
We present a method for fast and accurate physics-based predictions during non-prehensile manipulation planning and control. Given an initial state and a sequence of controls, the problem of predicting the resulting sequence of states is a key component of a variety of model-based planning and control algorithms. We propose combining a coarse (i.e. computationally cheap but not very accurate) predictive physics model, with a fine (i.e. computationally expensive but accurate) predictive physics model, to generate a hybrid model that is at the required speed and accuracy for a given manipulation task. Our approach is based on the Parareal algorithm, a parallel-in-time integration method used for computing numerical solutions for general systems of ordinary differential equations. We adapt Parareal to combine a coarse pushing model with an off-the-shelf physics engine to deliver physics-based predictions that are as accurate as the physics engine but run in substantially less wall-clock time, thanks to parallelization across time. We use these physics-based predictions in a model-predictive-control framework based on trajectory optimization, to plan pushing actions that avoid an obstacle and reach a goal location. We show that with hybrid physics models, we can achieve the same success rates as the planner that uses the off-the-shelf physics engine directly, but significantly faster. We present experiments in simulation and on a real robotic setup. Videos are available here: https://youtu.be/5e9oTeu4JOU.
Konferenz: 17th International Symposium of Robotics Research, ISRR 2019 
URI: http://hdl.handle.net/11420/12045
ISBN: 978-303095458-1
ISSN: 2511-1256
Zeitschrift: Springer proceedings in advanced robotics 
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Konferenzband)
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

57
Letzte Woche
0
Letzten Monat
checked on 01.10.2022

SCOPUSTM   
Zitate

7
Letzte Woche
0
Letzten Monat
checked on 01.07.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.