TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Which factor determines the optical losses in refractory tungsten thin films at high temperatures?
 
Options

Which factor determines the optical losses in refractory tungsten thin films at high temperatures?

Citation Link: https://doi.org/10.15480/882.4250
Publikationstyp
Journal Article
Date Issued
2022-03-04
Sprache
English
Author(s)
Arya, Mahima  
Ganguly, Ankita  
Krishnamurthy, Gnanavel Vaidhyanathan  
Rout, Surya Snata  
Gurevich, Leonid  
Krekeler, Tobias  
Ritter, Martin  orcid-logo
Pedersen, Kjeld  
Störmer, Michael  
Petrov, Alexander  orcid-logo
Eich, Manfred  
Chirumamilla, Manohar 
Institut
Optische und Elektronische Materialien E-12  
Betriebseinheit Elektronenmikroskopie M-26  
TORE-DOI
10.15480/882.4250
TORE-URI
http://hdl.handle.net/11420/12057
Journal
Applied surface science  
Volume
588
Article Number
152927
Citation
Applied Surface Science 588: 152927 (2022-06-30)
Publisher DOI
10.1016/j.apsusc.2022.152927
Scopus ID
2-s2.0-85125905664
Publisher
Elsevier
Refractory tungsten (W) plays an important role in high temperature photonic/plasmonic applications. Previously room temperature bulk single/poly-crystalline optical constants were extensively used to calculate the optical properties of W nanostructures at high temperatures. This might lead to a significant deviation between the predicted and measured optical properties due to the exclusion of electron–phonon interaction, as well as grain-boundary and surface-scattering. Herein, we show experimentally, how film thickness and temperature affects the optical losses in W. A drastic increase in the effective electron collision frequency is observed with decreasing the film thickness down to 5 nm, due to the grain-boundary and surface-scattering mechanisms. At sufficiently high temperatures (greater than 200 °C for W), the electron–phonon interaction eventually becomes the dominant mechanism, linearly increasing collision frequency with temperature, and it is independent of the geometry of the thin film structure. The impact of thickness and temperature-dependent optical properties of W is showcased with a hyperbolic 1D metamaterial structure acting as a thermophotovoltaic emitter. This work opens new directions in accurate prediction of the optical properties of nanostructures and design of efficient devices in various applications, such as aerospace, energy-efficient lighting, radiative cooling and energy harvesting, by incorporating thickness and temperature-dependent optical constants.
Subjects
Electron–phonon interaction
Grain boundary scattering
High temperature stability
Surface scattering
Thermophotovoltaics
Thin films
Tungsten
DDC Class
600: Technik
Funding(s)
SFB 986: Teilprojekt C01 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaik  
SFB 986: Teilprojekt C07 - Deposition und Stabilität von hochtemperaturfesten geschichteten Metamaterialien  
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
More Funding Information
K. Pedersen dankt für die finanzielle Unterstützung durch die Novo Nordisk, Förderungsnummer NNF20OC0064735.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S0169433222005013-main.pdf

Size

5.82 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback