Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4250
Publisher DOI: 10.1016/j.apsusc.2022.152927
Title: Which factor determines the optical losses in refractory tungsten thin films at high temperatures?
Language: English
Authors: Arya, Mahima 
Ganguly, Ankita 
Krishnamurthy, Gnanavel Vaidhyanathan 
Rout, Surya Snata 
Gurevich, Leonid 
Krekeler, Tobias 
Ritter, Martin  
Pedersen, Kjeld 
Störmer, Michael 
Petrov, Alexander  
Eich, Manfred 
Chirumamilla, Manohar 
Keywords: Electron–phonon interaction; Grain boundary scattering; High temperature stability; Surface scattering; Thermophotovoltaics; Thin films; Tungsten
Issue Date: 4-Mar-2022
Publisher: Elsevier
Source: Applied Surface Science 588: 152927 (2022-06-30)
Abstract (english): 
Refractory tungsten (W) plays an important role in high temperature photonic/plasmonic applications. Previously room temperature bulk single/poly-crystalline optical constants were extensively used to calculate the optical properties of W nanostructures at high temperatures. This might lead to a significant deviation between the predicted and measured optical properties due to the exclusion of electron–phonon interaction, as well as grain-boundary and surface-scattering. Herein, we show experimentally, how film thickness and temperature affects the optical losses in W. A drastic increase in the effective electron collision frequency is observed with decreasing the film thickness down to 5 nm, due to the grain-boundary and surface-scattering mechanisms. At sufficiently high temperatures (greater than 200 °C for W), the electron–phonon interaction eventually becomes the dominant mechanism, linearly increasing collision frequency with temperature, and it is independent of the geometry of the thin film structure. The impact of thickness and temperature-dependent optical properties of W is showcased with a hyperbolic 1D metamaterial structure acting as a thermophotovoltaic emitter. This work opens new directions in accurate prediction of the optical properties of nanostructures and design of efficient devices in various applications, such as aerospace, energy-efficient lighting, radiative cooling and energy harvesting, by incorporating thickness and temperature-dependent optical constants.
URI: http://hdl.handle.net/11420/12057
DOI: 10.15480/882.4250
ISSN: 0169-4332
Journal: Applied surface science 
Institute: Optische und Elektronische Materialien E-12 
Betriebseinheit Elektronenmikroskopie M-26 
Document Type: Article
Project: SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 
SFB 986: Teilprojekt C01 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaik 
SFB 986: Teilprojekt C07 - Deposition und Stabilität von hochtemperaturfesten geschichteten Metamaterialien 
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen 
Funded by: Deutsche Forschungsgemeinschaft (DFG) 
More Funding information: K. Pedersen dankt für die finanzielle Unterstützung durch die Novo Nordisk, Förderungsnummer NNF20OC0064735.
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
1-s2.0-S0169433222005013-main.pdfVerlags-PDF5,96 MBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

54
Last Week
0
Last month
checked on Dec 1, 2022

Download(s)

31
checked on Dec 1, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons