TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A proof of the algebraic tractability conjecture for monotone monadic SNP
 
Options

A proof of the algebraic tractability conjecture for monotone monadic SNP

Publikationstyp
Journal Article
Date Issued
2021
Sprache
English
Author(s)
Bodirsky, Manuel  
Madelaine, Florent  
Mottet, Antoine  
TORE-URI
http://hdl.handle.net/11420/12077
Journal
SIAM journal on computing  
Volume
50
Issue
4
Citation
SIAM Journal on Computing 50 (4) : (2021)
Publisher DOI
10.1137/19M128466X
Scopus ID
2-s2.0-85110840905
The logic MMSNP is a restricted fragment of existential second-order logic which can express many interesting queries in graph theory and finite model theory. The logic was introduced by Feder and Vardi, who showed that every MMSNP sentence is computationally equivalent to a finite-domain constraint satisfaction problem (CSP); the involved probabilistic reductions were derandomized by Kun using explicit constructions of expander structures. We present a new proof of the reduction to finite-domain CSPs that does not rely on the results of Kun. The new universalalgebraic proof allows us to obtain a stronger statement and to verify the more general Bodirsky-Pinsker dichotomy conjecture for CSPs in MMSNP. Our approach uses the fact that every MMSNP sentence describes a finite union of CSPs for countably infinite ω-categorical structures; moreover, by a recent result of Hubička and Nešetřil, these structures can be expanded to homogeneous structures with finite relational signature and the Ramsey property.
Subjects
Constraint satisfaction problems
Monotone monadic SNP
Polymorphisms
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback