Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4310

DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gander, Martin J. | - |
dc.contributor.author | Lunet, Thibaut | - |
dc.contributor.author | Ruprecht, Daniel | - |
dc.contributor.author | Speck, Robert | - |
dc.date.accessioned | 2022-04-26T16:18:22Z | - |
dc.date.available | 2022-04-26T16:18:22Z | - |
dc.date.issued | 2022-03-30 | - |
dc.identifier.citation | arXiv: 2203.16069v1 (2022) | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/12370 | - |
dc.description.abstract | Parallel-in-time integration has been the focus of intensive research efforts over the past two decades due to the advent of massively parallel computer architectures and the scaling limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been described using different notations and the convergence estimates that are available for some of them are difficult to compare. We describe Parareal, PFASST, MGRIT and STMG for the Dahlquist model problem using a common notation and give precise convergence estimates using generating functions. This allows us, for the first time, to directly compare their convergence. We prove that all four methods eventually converge super-linearly and compare them directly numerically. Our framework also allows us to find new methods. | en |
dc.description.sponsorship | Bundesministerium für Bildung und Forschung (BMBF) | de_DE |
dc.description.sponsorship | European High-Performance Computing Joint Undertaking (JU) | de_DE |
dc.language.iso | en | de_DE |
dc.rights | Copyright | de_DE |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | de_DE |
dc.subject | Mathematics - Numerical Analysis | de_DE |
dc.subject | Mathematics - Numerical Analysis | de_DE |
dc.subject | Computer Science - Computational Engineering; Finance; and Science | de_DE |
dc.subject | Computer Science - Numerical Analysis | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | A unified analysis framework for iterative parallel-in-time algorithms | de_DE |
dc.type | Article | de_DE |
dc.identifier.doi | 10.15480/882.4310 | - |
dc.type.dini | article | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0181837 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | Parallel-in-time integration has been the focus of intensive research efforts over the past two decades due to the advent of massively parallel computer architectures and the scaling limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been described using different notations and the convergence estimates that are available for some of them are difficult to compare. We describe Parareal, PFASST, MGRIT and STMG for the Dahlquist model problem using a common notation and give precise convergence estimates using generating functions. This allows us, for the first time, to directly compare their convergence. We prove that all four methods eventually converge super-linearly and compare them directly numerically. Our framework also allows us to find new methods. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.4310 | - |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.type.driver | article | - |
dc.type.casrai | Journal Article | - |
dc.relation.project | TIME parallelisation: for eXascale computing and beyond | de_DE |
dc.relation.project | Horizon | de_DE |
dc.rights.nationallicense | false | de_DE |
dc.identifier.arxiv | 2203.16069v1 | de_DE |
local.status.inpress | false | de_DE |
local.funding.info | This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955701. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Belgium, France, Germany, and Switzerland. This project also received funding from the German Federal Ministry of Education and Research (BMBF) grant 16HPC048. | de_DE |
datacite.resourceType | Journal Article | - |
datacite.resourceTypeGeneral | Text | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.creatorOrcid | Gander, Martin J. | - |
item.creatorOrcid | Lunet, Thibaut | - |
item.creatorOrcid | Ruprecht, Daniel | - |
item.creatorOrcid | Speck, Robert | - |
item.mappedtype | Article | - |
item.creatorGND | Gander, Martin J. | - |
item.creatorGND | Lunet, Thibaut | - |
item.creatorGND | Ruprecht, Daniel | - |
item.creatorGND | Speck, Robert | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-1904-2473 | - |
crisitem.author.orcid | 0000-0002-3879-1210 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
crisitem.funder.funderid | 501100002347 | - |
crisitem.funder.funderrorid | 04pz7b180 | - |
crisitem.project.funder | European Commission | - |
crisitem.project.funderid | 501100000780 | - |
crisitem.project.funderrorid | 00k4n6c32 | - |
crisitem.project.grantno | GA 955701 | - |
crisitem.project.fundingProgram | H2020 | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/EC/H2020/955701 | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2203.16069.pdf | 848,87 kB | Adobe PDF | View/Open![]() |
Page view(s)
99
Last Week
1
1
Last month
checked on Aug 8, 2022
Download(s)
32
checked on Aug 8, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.