Publisher DOI: 10.3389/fmats.2020.00051
Title: Machine learning and data mining in materials science : editorial
Language: English
Authors: Huber, Norbert  
Kalidindi, Surya R. 
Klusemann, Benjamin 
Cyron, Christian J. 
Editor: Helmholtz-Zentrum Hereon 
Keywords: data mining; machine learning; machining of data; materials design; materials processing; scale bridging
Issue Date: 28-Feb-2020
Publisher: Frontiers Media
Source: Frontiers in Materials 7 : 51 (2020-02-28)
URI: http://hdl.handle.net/11420/12427
ISSN: 2296-8016
Journal: Frontiers in materials 
Institute: Werkstoffphysik und -technologie M-22 
Kontinuums- und Werkstoffmechanik M-15 
Document Type: Editorial
Project: SFB 986: Teilprojekt B04 - Mikromechanisches Materialverhalten hierarchischer Werkstoffe 
SFB 986: Teilprojekt B09 - Mikrostrukturbasierte Klassifizierung und elektronenmikroskopische Analyse nanoporöser Metalle durch maschinelles Lernen 
Funded by: Deutsche Forschungsgemeinschaft (DFG) 
More Funding information: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number 192346071 - SFB 986 “Tailor-Made Multi-Scale Materials Systems: M3”, projects B4 and B9, and by the Office of Naval Research N00014-18-1-2879.
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

24
Last Week
0
Last month
checked on Nov 30, 2022

SCOPUSTM   
Citations

8
Last Week
1
Last month
checked on Jul 1, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.