Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4325
DC FieldValueLanguage
dc.contributor.authorColombi, Raffaele-
dc.contributor.authorRohde, Niclas-
dc.contributor.authorSchlüter, Michael-
dc.contributor.authorKameke, Alexandra von-
dc.contributor.editorDe Stefano, Giuliano-
dc.date.accessioned2022-05-06T08:33:30Z-
dc.date.available2022-05-06T08:33:30Z-
dc.date.issued2022-04-24-
dc.identifier.citationFluids 7 (5)(2022-04-24)de_DE
dc.identifier.issn2311-5521de_DE
dc.identifier.urihttp://hdl.handle.net/11420/12505-
dc.description.abstractIn nature, turbulent flows exist that are neither simply 2D nor 3D but are forced towards one state or the other by boundary conditions such as varying stratification. Here, we report the first evidence of the co-existence of an inverse and a direct energy cascade in an experimental flow driven by Faraday waves in water. We find that an inverse energy cascade at the fluid surface and a direct energy cascade in the 3D bulk flow underneath co-exist. We base our analysis on temporally and spatially well-resolved velocity fields obtained by particle image velocimetry measurements at planes parallel and perpendicular to the water surface. The findings also provide strong evidence that the intense turbulent 2D surface flow drives the 3D bulk flow through sporadic vertical jets as a source of momentum to the bulk liquid.en
dc.language.isoende_DE
dc.publisherMDPIde_DE
dc.relation.ispartofFluidsde_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectturbulent flowsde_DE
dc.subjectparticle image velocimetryde_DE
dc.subjectFaraday wavesde_DE
dc.subjectwave–fluid interactionde_DE
dc.subject47.27.-ide_DE
dc.subject47.80.Cbde_DE
dc.subject47.80.Jkde_DE
dc.subject.ddc600: Technikde_DE
dc.titleCoexistence of inverse and direct energy cascades in faraday wavesde_DE
dc.typeArticlede_DE
dc.date.updated2022-05-05T11:51:25Z-
dc.identifier.doi10.15480/882.4325-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0183374-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIn nature, turbulent flows exist that are neither simply 2D nor 3D but are forced towards one state or the other by boundary conditions such as varying stratification. Here, we report the first evidence of the co-existence of an inverse and a direct energy cascade in an experimental flow driven by Faraday waves in water. We find that an inverse energy cascade at the fluid surface and a direct energy cascade in the 3D bulk flow underneath co-exist. We base our analysis on temporally and spatially well-resolved velocity fields obtained by particle image velocimetry measurements at planes parallel and perpendicular to the water surface. The findings also provide strong evidence that the intense turbulent 2D surface flow drives the 3D bulk flow through sporadic vertical jets as a source of momentum to the bulk liquid.de_DE
tuhh.abstract.englishIn nature, turbulent flows exist that are neither simply 2D nor 3D but are forced towards one state or the other by boundary conditions such as varying stratification. Here, we report the first evidence of the co-existence of an inverse and a direct energy cascade in an experimental flow driven by Faraday waves in water. We find that an inverse energy cascade at the fluid surface and a direct energy cascade in the 3D bulk flow underneath co-exist. We base our analysis on temporally and spatially well-resolved velocity fields obtained by particle image velocimetry measurements at planes parallel and perpendicular to the water surface. The findings also provide strong evidence that the intense turbulent 2D surface flow drives the 3D bulk flow through sporadic vertical jets as a source of momentum to the bulk liquid.en
tuhh.publisher.doi10.3390/fluids7050148-
tuhh.publication.instituteMehrphasenströmungen V-5de_DE
tuhh.identifier.doi10.15480/882.4325-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue5de_DE
tuhh.container.volume7de_DE
dc.rights.nationallicensefalsede_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
dcterms.publisher.place-
item.fulltextWith Fulltext-
item.editorOrcidDe Stefano, Giuliano-
item.contributorOrcidDe Stefano, Giuliano-
item.creatorOrcidColombi, Raffaele-
item.creatorOrcidRohde, Niclas-
item.creatorOrcidSchlüter, Michael-
item.creatorOrcidKameke, Alexandra von-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.contributorGNDDe Stefano, Giuliano-
item.editorGNDDe Stefano, Giuliano-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDColombi, Raffaele-
item.creatorGNDRohde, Niclas-
item.creatorGNDSchlüter, Michael-
item.creatorGNDKameke, Alexandra von-
item.openairetypeArticle-
item.grantfulltextopen-
item.mappedtypeArticle-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.orcid0000-0002-8209-085X-
crisitem.author.orcid0000-0002-6159-2404-
crisitem.author.orcid0000-0001-5969-2150-
crisitem.author.orcid0000-0002-1913-774X-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
fluids-07-00148.pdfVerlags-PDF7,95 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

41
checked on May 16, 2022

Download(s)

7
checked on May 16, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons