Titel: Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system
Sprache: English
Autor/Autorin: Li, Jiequan 
Medviďová-Lukáčová, Mária 
Warnecke, Gerald 
Schlagwörter: genuinely multidimensional schemes;hyperbolic systems;wave equation;Euler equations;evolution Galerkin schemes
Erscheinungsdatum: Mär-2003
Teil der Schriftenreihe: Preprints des Institutes für Mathematik 
Bandangabe: 58
Zusammenfassung (englisch): The subject of this paper is a demonstration of the accuracy and robustness of evolution Galerkin schemes applied to two-dimensional Riemann problems with finitely many constant states. In order to have a test case with known exact solution we consider a linear first order system for the wave equation and test evolution Galerkin methods as well as other commonly used schemes with respect to their accuracy in capturing important structural phenomena of the solution. For the two-dimensional Riemann problems with finitely many constant states some parts of the exact solution are constructed in the following three steps. Using a self-similar transformation we solve the Riemann problem outside a neighborhood of the origin and then work inwards. Next a Goursant-type problem has to be solved to describe the interaction of waves up to the sonic circle. Inside it a system of composite elliptichyperbolic type is obtained, which may not always be solvable exactly. There an interesting local maximum principle can be shown. Finally, an exact partial solution is used for numerical comparisons.
URI: http://tubdok.tub.tuhh.de/handle/11420/132
DOI: 10.15480/882.130
Institut: Mathematik E-10 
Dokumenttyp: ResearchPaper
Enthalten in den Sammlungen:tub.dok

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
rep58.pdf707,92 kBAdobe PDFMiniaturbild
Zur Langanzeige


Letzte Woche
Letzten Monat
checked on 17.02.2019


checked on 17.02.2019

Google ScholarTM



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.