Verlagslink DOI: 10.1214/22-EJP805
Titel: Variance asymptotics and central limit theory for geometric functionals of Poisson cylinder processes
Sprache: Englisch
Autor/Autorin: Betken, Carina 
Schulte, Matthias 
Thäle, Christoph 
Schlagwörter: Berry-Esseen bound; central limit theorem; geometric functional; intrinsic volume; multivariate central limit theorem; Poisson cylinder process; second-order Poincaré inequality; stochastic geometry; variance asymptotics
Erscheinungs­datum: Jun-2022
Verlag: Univ. of Washington, Mathematics Dep.
Quellenangabe: Electronic Journal of Probability 27: 79, 1-47 (2022)
Zusammenfassung (englisch): 
This paper deals with the union set of a stationary Poisson process of cylinders in Rn having an (n − m)-dimensional base and an m-dimensional direction space, where m ∈ 0, 1, …, n − 1 and n ≥ 2. The concept simultaneously generalises those of a Boolean model and a Poisson hyperplane or m-flat process. Under very general conditions on the typical cylinder base a Berry-Esseen bound for the volume of the union set within a sequence of growing test sets is derived. Assuming convexity of the cylinder bases and of the window a similar result is shown for a broad class of geometric functionals, including the intrinsic volumes. In this context the asymptotic variance constant is analysed in detail, which in contrast to the Boolean model leads to a new degeneracy phenomenon. A quantitative central limit theory is developed in a multivariate set-up as well.
URI: http://hdl.handle.net/11420/13380
DOI: 10.15480/882.4531
ISSN: 1083-6489
Zeitschrift: Electronic journal of probability 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Lizenz: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Enthalten in den Sammlungen:Publications with fulltext

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
22-EJP805.pdfVerlags-PDF1,48 MBAdobe PDFÖffnen/Anzeigen
Miniaturbild
Zur Langanzeige

Seitenansichten

44
checked on 01.10.2022

Download(s)

11
checked on 01.10.2022

Google ScholarTM

Prüfe

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons