Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.131
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorMedviďová-Lukáčová, Mária-
dc.contributor.authorSaibertova, Jitka-
dc.contributor.authorWarnecke, Gerald-
dc.contributor.authorZahaykah, Yousef-
dc.date.accessioned2006-02-17T09:43:32Zde_DE
dc.date.available2006-02-17T09:43:32Zde_DE
dc.date.issued2003-01-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/133-
dc.description.abstractThe subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical experiments for both the Maxwell and the linearized Euler equations.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecthyperbolic systemsde_DE
dc.subjectwave equationde_DE
dc.subjectevolution Galerkin schemesde_DE
dc.subjectMaxwell equationsde_DE
dc.subjectlinearized Euler equationsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleOn evolution Galerkin Methods for the Maxwell and the linearezed Euler equationsde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-03-16T11:32:15Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1921de_DE
dc.identifier.doi10.15480/882.131-
dc.type.diniworkingPaper-
dc.subject.gndHyperbolisches Systemde
dc.subject.gndGalerkin-Methodede
dc.subject.gndWellenfunktionde
dc.subject.ddccode510-
dc.subject.msc65M06:Finite difference methodsen
dc.subject.msc35L05:Wave equationen
dc.subject.msccode35L05-
dc.subject.msccode65M06-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1921de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id192de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/133-
tuhh.abstract.englishThe subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical experiments for both the Maxwell and the linearized Euler equations.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.131-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverworkingPaper-
dc.identifier.oclc930767964-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber55de_DE
datacite.resourceTypeWorking Paper-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidMedviďová-Lukáčová, Mária-
item.creatorOrcidSaibertova, Jitka-
item.creatorOrcidWarnecke, Gerald-
item.creatorOrcidZahaykah, Yousef-
item.mappedtypeWorking Paper-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.creatorGNDMedviďová-Lukáčová, Mária-
item.creatorGNDSaibertova, Jitka-
item.creatorGNDWarnecke, Gerald-
item.creatorGNDZahaykah, Yousef-
item.seriesrefPreprints des Institutes für Mathematik;55-
item.fulltextWith Fulltext-
item.openairetypeWorking Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep55.pdf211,12 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

274
Last Week
0
Last month
3
checked on Aug 8, 2022

Download(s)

93
checked on Aug 8, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.