arXiv ID: 2104.00711v2
Titel: Finite section method for aperiodic Schrödinger operators
Sprache: Englisch
Autor/Autorin: Gabel, Fabian Nuraddin Alexander  
Gallaun, Dennis 
Großmann, Julian Peter  
Lindner, Marko  
Ukena, Riko 
Schlagwörter: Mathematics - Spectral Theory; Mathematics - Spectral Theory; Computer Science - Numerical Analysis; Mathematical Physics; Mathematics - Mathematical Physics; Mathematics - Numerical Analysis; 65J10, 47B36 (Primary) 47N50 (Secondary)
Erscheinungs­datum: 1-Apr-2021
Quellenangabe: arXiv: 2104.00711v2 (2021-04-01)
Zusammenfassung (englisch): 
We consider discrete Schrödinger operators with aperiodic potentials given by a Sturmian word, which is a natural generalisation of the Fibonacci Hamiltonian. We introduce the finite section method, which is often used to solve operator equations approximately, and apply it first to periodic Schrödinger operators. It turns out that the applicability of the method is always guaranteed for integer-valued potentials provided that the operator is invertible. By using periodic approximations, we find a necessary and sufficient condition for the applicability of the finite section method for aperiodic Schrödinger operators and a numerical method to check it.
URI: http://hdl.handle.net/11420/13414
Institut: Mathematik E-10 
Dokumenttyp: Vorabdruck (Preprint)
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

22
checked on 05.10.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.