DC FieldValueLanguage
dc.contributor.authorGabel, Fabian Nuraddin Alexander-
dc.contributor.authorGallaun, Dennis-
dc.contributor.authorGroßmann, Julian Peter-
dc.contributor.authorLindner, Marko-
dc.contributor.authorUkena, Riko-
dc.date.accessioned2022-08-08T07:54:32Z-
dc.date.available2022-08-08T07:54:32Z-
dc.date.issued2021-04-01-
dc.identifier.citationarXiv: 2104.00711v2 (2021-04-01)de_DE
dc.identifier.urihttp://hdl.handle.net/11420/13414-
dc.description.abstractWe consider discrete Schrödinger operators with aperiodic potentials given by a Sturmian word, which is a natural generalisation of the Fibonacci Hamiltonian. We introduce the finite section method, which is often used to solve operator equations approximately, and apply it first to periodic Schrödinger operators. It turns out that the applicability of the method is always guaranteed for integer-valued potentials provided that the operator is invertible. By using periodic approximations, we find a necessary and sufficient condition for the applicability of the finite section method for aperiodic Schrödinger operators and a numerical method to check it.en
dc.language.isoende_DE
dc.subjectMathematics - Spectral Theoryde_DE
dc.subjectMathematics - Spectral Theoryde_DE
dc.subjectComputer Science - Numerical Analysisde_DE
dc.subjectMathematical Physicsde_DE
dc.subjectMathematics - Mathematical Physicsde_DE
dc.subjectMathematics - Numerical Analysisde_DE
dc.subject65J10, 47B36 (Primary) 47N50 (Secondary)de_DE
dc.subject.ddc510: Mathematikde_DE
dc.subject.ddc530: Physikde_DE
dc.titleFinite section method for aperiodic Schrödinger operatorsde_DE
dc.typePreprintde_DE
dc.type.dinipreprint-
dcterms.DCMITypeText-
tuhh.abstract.englishWe consider discrete Schrödinger operators with aperiodic potentials given by a Sturmian word, which is a natural generalisation of the Fibonacci Hamiltonian. We introduce the finite section method, which is often used to solve operator equations approximately, and apply it first to periodic Schrödinger operators. It turns out that the applicability of the method is always guaranteed for integer-valued potentials provided that the operator is invertible. By using periodic approximations, we find a necessary and sufficient condition for the applicability of the finite section method for aperiodic Schrödinger operators and a numerical method to check it.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opusPreprint (Vorabdruck)-
dc.type.driverpreprint-
dc.type.casraiOther-
dc.identifier.arxiv2104.00711v2de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeGeneralPreprint-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypePreprint-
item.creatorOrcidGabel, Fabian Nuraddin Alexander-
item.creatorOrcidGallaun, Dennis-
item.creatorOrcidGroßmann, Julian Peter-
item.creatorOrcidLindner, Marko-
item.creatorOrcidUkena, Riko-
item.languageiso639-1en-
item.creatorGNDGabel, Fabian Nuraddin Alexander-
item.creatorGNDGallaun, Dennis-
item.creatorGNDGroßmann, Julian Peter-
item.creatorGNDLindner, Marko-
item.creatorGNDUkena, Riko-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.mappedtypePreprint-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-8053-0284-
crisitem.author.orcid0000-0003-2307-8137-
crisitem.author.orcid0000-0003-2953-7701-
crisitem.author.orcid0000-0001-8483-2944-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

29
checked on Dec 6, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.