Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4561
Title: Towards neural network-based numerical friction models
Language: English
Authors: Vater, Kerstin  
Stender, Merten 
Hoffmann, Norbert  
Keywords: Structural dynamics; Friction; Machine learning; Nonlinear dynamics; Hybrid modeling
Issue Date: 18-Aug-2022
Source: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2022)
Abstract (english): 
Friction contacts can be found in almost all mechanical systems and are often of great technical importance. However, they are usually difficult to describe, and their behavior and influence on the whole system are hard to predict accurately. Modern product design and system operation strongly benefit from numerical simulation approaches today, but reliable friction models still represent a major challenge in this context.
To tackle this problem, we employ neural network regression to capture the characteristics of frictional contacts and make them accessible for numerical methods in a minimal intrusive fashion. In particular, we test our approach using a Finite Element model of a 2D cantilever beam subject to stick-slip vibrations induced by a moving conveyor belt at its free end.
As a reference solution, we perform a transient analysis based on a simple analytical friction model, where the kinetic friction force only depends on the normal load and the relative sliding velocity. We take the same friction model, add some artificial noise to mimic uncertainties coming with experimental measurements, and pick a limited set of data points to train a regression neural network. The machine learning friction model is then deployed in the Finite Element code to predict the kinetic friction force acting on the beam tip during the slip phases.
The deflection curves obtained by the transient numerical analysis using the new neural network friction model agree well with the reference solution based on the underlying analytical model. The results indicate that data-driven approaches may also be capable of capturing more complex frictional contacts, including effects of temperature, humidity, and load history. The trained neural network friction models can then be employed in numerical simulations in a minimally intrusive manner. This approach opens up new possibilities to predict individual mechanical system behavior as accurately as possible.
Conference: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, GAMM 2022 
URI: http://hdl.handle.net/11420/13470
DOI: 10.15480/882.4561
Institute: Strukturdynamik M-14 
Document Type: Presentation
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Is supplemented by: 10.15480/882.5045
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
GAMM_2022_Vater_nn-based-friction-models.pdfPresentation slides1,74 MBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

100
checked on Apr 4, 2023

Download(s)

67
checked on Apr 4, 2023

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons