Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4580
DC FieldValueLanguage
dc.contributor.advisorSchlüter, Michael-
dc.contributor.authorKexel, Felix-
dc.date.accessioned2022-09-09T10:25:00Z-
dc.date.available2022-09-09T10:25:00Z-
dc.date.issued2019-03-
dc.identifier.urihttp://hdl.handle.net/11420/13557-
dc.description.abstractWith the aim to achieve an enhanced mass transfer performance by applying additive manufacturing methods, a transparent jet loop reactor is designed and characterized. The reactor is built from acrylic glass, with an experimental draft tube to reactor diameter ratio of 0.71. In order to optimize the flow conditions, the edges of the draft tube are modeled as drop shaped widenings based on empirical observations and the work of H. Blenke [Ble71]. Simultaneously, creating a benchmark system, a cylindrical draft tube with sharp edges is designed and compared against. The reactor performance is characterized by determining the overall gas hold-up, the bubble properties and the volume specific liquid-phase mass transfer coefficient in a water-air system. Though the flow optimization re-sults in an overall increase in the gas holdup, it also causes an increase in the mean bubble size, yielding lower interfacial areas. Therefore, the volume specific mass transfer is not significantly increased by the flow opti-mized draft tube. Contrarily, for medium gassing rates, it tends to slightly decrease, due to the smaller interfacial area. Overall values of the volume specific mass transfer, obtained by the dynamic measurement method, are within a range of βLa = 50 – 90 h-1. These results are confirmed by stationary measurements. The measured data is compared to correlations from literature, which are then refitted to better match the measurement results. The results show that the use of a 3D-printed flow optimized draft tube is useful, if a chemical reaction is consuming a valuable gas as recirculation within the loop is intensified. A significant effect of the flow optimization on the mass transfer is not measurable, but the influence of the energy dissipation is reduced, which might reduce the overall energy consumption in the flow optimized reactor system.en
dc.language.isoende_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subject.ddc660: Technische Chemiede_DE
dc.titleDesign and characterization of a 3D-printed jet loop reactor with optimized flow conditions for enhanced mass transferde_DE
dc.typeThesisde_DE
dcterms.dateAccepted2019-03-
dc.identifier.doi10.15480/882.4580-
dc.type.thesismasterThesisde_DE
dc.type.dinimasterThesis-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0196032-
tuhh.oai.showtruede_DE
tuhh.abstract.englishWith the aim to achieve an enhanced mass transfer performance by applying additive manufacturing methods, a transparent jet loop reactor is designed and characterized. The reactor is built from acrylic glass, with an experimental draft tube to reactor diameter ratio of 0.71. In order to optimize the flow conditions, the edges of the draft tube are modeled as drop shaped widenings based on empirical observations and the work of H. Blenke [Ble71]. Simultaneously, creating a benchmark system, a cylindrical draft tube with sharp edges is designed and compared against. The reactor performance is characterized by determining the overall gas hold-up, the bubble properties and the volume specific liquid-phase mass transfer coefficient in a water-air system. Though the flow optimization re-sults in an overall increase in the gas holdup, it also causes an increase in the mean bubble size, yielding lower interfacial areas. Therefore, the volume specific mass transfer is not significantly increased by the flow opti-mized draft tube. Contrarily, for medium gassing rates, it tends to slightly decrease, due to the smaller interfacial area. Overall values of the volume specific mass transfer, obtained by the dynamic measurement method, are within a range of βLa = 50 – 90 h-1. These results are confirmed by stationary measurements. The measured data is compared to correlations from literature, which are then refitted to better match the measurement results. The results show that the use of a 3D-printed flow optimized draft tube is useful, if a chemical reaction is consuming a valuable gas as recirculation within the loop is intensified. A significant effect of the flow optimization on the mass transfer is not measurable, but the influence of the energy dissipation is reduced, which might reduce the overall energy consumption in the flow optimized reactor system.de_DE
tuhh.publication.instituteMehrphasenströmungen V-5de_DE
tuhh.identifier.doi10.15480/882.4580-
tuhh.type.opusMasterarbeit-
tuhh.gvk.hasppnfalse-
tuhh.contributor.refereeLiese, Andreas-
tuhh.contributor.refereeSzeliga, Nicolai-
tuhh.hasurnfalse-
dc.type.drivermasterThesis-
thesis.grantor.universityOrInstitutionTechnische Universität Hamburgde_DE
thesis.grantor.placeHamburgde_DE
dc.type.casraiSupervised Student Publication-
dc.rights.nationallicensefalsede_DE
local.status.inpressfalsede_DE
local.publisher.peerreviewedfalsede_DE
datacite.resourceTypeMaster Thesis-
datacite.resourceTypeGeneralDissertation-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.refereeOrcidLiese, Andreas-
item.refereeOrcidSzeliga, Nicolai-
item.openairetypeThesis-
item.creatorOrcidKexel, Felix-
item.languageiso639-1en-
item.advisorOrcidSchlüter, Michael-
item.creatorGNDKexel, Felix-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.advisorGNDSchlüter, Michael-
item.refereeGNDLiese, Andreas-
item.refereeGNDSzeliga, Nicolai-
item.mappedtypemasterThesis-
crisitem.author.deptMehrphasenströmungen V-5-
crisitem.author.orcid0000-0003-4268-2348-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik (V)-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Kexel-2019-Schlaufenreaktoren.pdf3,49 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

54
checked on Dec 5, 2022

Download(s)

39
checked on Dec 5, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons