Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4584
DC FieldValueLanguage
dc.contributor.authorKühl, Niklas-
dc.contributor.authorNguyen, Thanh Tung-
dc.contributor.authorPalm, Michael-
dc.contributor.authorJürgens, Dirk-
dc.contributor.authorRung, Thomas-
dc.date.accessioned2022-09-09T10:31:40Z-
dc.date.available2022-09-09T10:31:40Z-
dc.date.issued2022-08-
dc.identifier.citationStructural and Multidisciplinary Optimization 65 (9): 247 (2022-09)de_DE
dc.identifier.issn1615-1488de_DE
dc.identifier.urihttp://hdl.handle.net/11420/13572-
dc.description.abstractThe paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn–Hilliard formulation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward—yet non-frozen—adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the same time obey technical constraints on the vessel’s displacement and its extensions. The Hilbert-space approach provides smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. The application includes a full-scale offshore supply vessel at Re = 3 × 10 8 and Fn = 0.37. Results illustrate that the fully parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9–13% within ≈O(10,000-30,000) CPUh depending on the considered couplings and floatation aspects.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofStructural and multidisciplinary optimizationde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectContinuous adjoint two-phase flowde_DE
dc.subjectDual consistencyde_DE
dc.subjectFloating vesselde_DE
dc.subjectHull optimizationde_DE
dc.subjectNode-based shape optimizationde_DE
dc.subject.ddc600: Technikde_DE
dc.titleAdjoint node-based shape optimization of free-floating vesselsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4584-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0196286-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn–Hilliard formulation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward—yet non-frozen—adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the same time obey technical constraints on the vessel’s displacement and its extensions. The Hilbert-space approach provides smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. The application includes a full-scale offshore supply vessel at Re = 3 × 10 8 and Fn = 0.37. Results illustrate that the fully parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9–13% within ≈O(10,000-30,000) CPUh depending on the considered couplings and floatation aspects.de_DE
tuhh.publisher.doi10.1007/s00158-022-03338-2-
tuhh.publication.instituteFluiddynamik und Schiffstheorie M-8de_DE
tuhh.identifier.doi10.15480/882.4584-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue9de_DE
tuhh.container.volume65de_DE
dc.relation.projectWeiterentwicklung von praxistauglichen simulationsbasierten Methoden zur Verbesserung der Leistungsfähigkeit von Schiffen mittels Formoptimierungde_DE
dc.relation.projectHydrodynamische Widerstandsoptimierung von Schiffsrümpfende_DE
dc.relation.projectSimulationsbasierte Entwurfsoptimierung dynamischer Systeme unter Unsicherheitende_DE
dc.relation.projectProjekt DEAL-
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85137061667de_DE
tuhh.container.articlenumber247de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
datacite.resourceTypeArticle-
datacite.resourceTypeGeneralJournalArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
item.creatorGNDKühl, Niklas-
item.creatorGNDNguyen, Thanh Tung-
item.creatorGNDPalm, Michael-
item.creatorGNDJürgens, Dirk-
item.creatorGNDRung, Thomas-
item.mappedtypeArticle-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.creatorOrcidKühl, Niklas-
item.creatorOrcidNguyen, Thanh Tung-
item.creatorOrcidPalm, Michael-
item.creatorOrcidJürgens, Dirk-
item.creatorOrcidRung, Thomas-
crisitem.project.funderBundesministerium für Wirtschaft und Klimaschutz (BMWK)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderBehörde für Wissenschaft, Forschung und Gleichstellung-
crisitem.project.funderid501100006360-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid02vgg2808-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid02c585m74-
crisitem.project.grantno03SX453B-
crisitem.project.grantnoRU 1575/3-1-
crisitem.project.grantnoLFF-GK11-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.deptFluiddynamik und Schiffstheorie M-8-
crisitem.author.orcid0000-0002-4229-1358-
crisitem.author.orcid0000-0002-3454-1804-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
s00158-022-03338-2.pdfVerlags-PDF4,9 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

83
checked on Jun 8, 2023

Download(s)

30
checked on Jun 8, 2023

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons