Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.4584
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kühl, Niklas | - |
dc.contributor.author | Nguyen, Thanh Tung | - |
dc.contributor.author | Palm, Michael | - |
dc.contributor.author | Jürgens, Dirk | - |
dc.contributor.author | Rung, Thomas | - |
dc.date.accessioned | 2022-09-09T10:31:40Z | - |
dc.date.available | 2022-09-09T10:31:40Z | - |
dc.date.issued | 2022-08 | - |
dc.identifier.citation | Structural and Multidisciplinary Optimization 65 (9): 247 (2022-09) | de_DE |
dc.identifier.issn | 1615-1488 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/13572 | - |
dc.description.abstract | The paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn–Hilliard formulation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward—yet non-frozen—adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the same time obey technical constraints on the vessel’s displacement and its extensions. The Hilbert-space approach provides smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. The application includes a full-scale offshore supply vessel at Re = 3 × 10 8 and Fn = 0.37. Results illustrate that the fully parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9–13% within ≈O(10,000-30,000) CPUh depending on the considered couplings and floatation aspects. | en |
dc.language.iso | en | de_DE |
dc.publisher | Springer | de_DE |
dc.relation.ispartof | Structural and multidisciplinary optimization | de_DE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de_DE |
dc.subject | Continuous adjoint two-phase flow | de_DE |
dc.subject | Dual consistency | de_DE |
dc.subject | Floating vessel | de_DE |
dc.subject | Hull optimization | de_DE |
dc.subject | Node-based shape optimization | de_DE |
dc.subject.ddc | 600: Technik | de_DE |
dc.title | Adjoint node-based shape optimization of free-floating vessels | de_DE |
dc.type | Article | de_DE |
dc.identifier.doi | 10.15480/882.4584 | - |
dc.type.dini | article | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0196286 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.english | The paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn–Hilliard formulation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward—yet non-frozen—adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the same time obey technical constraints on the vessel’s displacement and its extensions. The Hilbert-space approach provides smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. The application includes a full-scale offshore supply vessel at Re = 3 × 10 8 and Fn = 0.37. Results illustrate that the fully parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9–13% within ≈O(10,000-30,000) CPUh depending on the considered couplings and floatation aspects. | de_DE |
tuhh.publisher.doi | 10.1007/s00158-022-03338-2 | - |
tuhh.publication.institute | Fluiddynamik und Schiffstheorie M-8 | de_DE |
tuhh.identifier.doi | 10.15480/882.4584 | - |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.type.driver | article | - |
dc.type.casrai | Journal Article | - |
tuhh.container.issue | 9 | de_DE |
tuhh.container.volume | 65 | de_DE |
dc.relation.project | Weiterentwicklung von praxistauglichen simulationsbasierten Methoden zur Verbesserung der Leistungsfähigkeit von Schiffen mittels Formoptimierung | de_DE |
dc.relation.project | Hydrodynamische Widerstandsoptimierung von Schiffsrümpfen | de_DE |
dc.relation.project | Simulationsbasierte Entwurfsoptimierung dynamischer Systeme unter Unsicherheiten | de_DE |
dc.relation.project | Projekt DEAL | - |
dc.rights.nationallicense | false | de_DE |
dc.identifier.scopus | 2-s2.0-85137061667 | de_DE |
tuhh.container.articlenumber | 247 | de_DE |
local.status.inpress | false | de_DE |
local.type.version | publishedVersion | de_DE |
datacite.resourceType | Article | - |
datacite.resourceTypeGeneral | JournalArticle | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
item.creatorGND | Kühl, Niklas | - |
item.creatorGND | Nguyen, Thanh Tung | - |
item.creatorGND | Palm, Michael | - |
item.creatorGND | Jürgens, Dirk | - |
item.creatorGND | Rung, Thomas | - |
item.mappedtype | Article | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.creatorOrcid | Kühl, Niklas | - |
item.creatorOrcid | Nguyen, Thanh Tung | - |
item.creatorOrcid | Palm, Michael | - |
item.creatorOrcid | Jürgens, Dirk | - |
item.creatorOrcid | Rung, Thomas | - |
crisitem.project.funder | Bundesministerium für Wirtschaft und Klimaschutz (BMWK) | - |
crisitem.project.funder | Deutsche Forschungsgemeinschaft (DFG) | - |
crisitem.project.funder | Behörde für Wissenschaft, Forschung und Gleichstellung | - |
crisitem.project.funderid | 501100006360 | - |
crisitem.project.funderid | 501100001659 | - |
crisitem.project.funderrorid | 02vgg2808 | - |
crisitem.project.funderrorid | 018mejw64 | - |
crisitem.project.funderrorid | 02c585m74 | - |
crisitem.project.grantno | 03SX453B | - |
crisitem.project.grantno | RU 1575/3-1 | - |
crisitem.project.grantno | LFF-GK11 | - |
crisitem.author.dept | Fluiddynamik und Schiffstheorie M-8 | - |
crisitem.author.dept | Fluiddynamik und Schiffstheorie M-8 | - |
crisitem.author.orcid | 0000-0002-4229-1358 | - |
crisitem.author.orcid | 0000-0002-3454-1804 | - |
crisitem.author.parentorg | Studiendekanat Maschinenbau | - |
crisitem.author.parentorg | Studiendekanat Maschinenbau | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s00158-022-03338-2.pdf | Verlags-PDF | 4,9 MB | Adobe PDF | View/Open![]() |
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License