TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Spin‐ and Stress‐Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance
 
Options

Spin‐ and Stress‐Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance

Citation Link: https://doi.org/10.15480/882.4600
Publikationstyp
Journal Article
Date Issued
2022-05-26
Sprache
English
Author(s)
Dreyer, Axel  
Rempel, Thomas  
Gottschalk, Martin  
Zierold, Robert  
Weimer, Agnes  
Feld, Artur  
Schneider, Gerold A.  
Weller, Horst  
Hütten, Andreas  
Institut
Keramische Hochleistungswerkstoffe M-9  
TORE-DOI
10.15480/882.4600
TORE-URI
http://hdl.handle.net/11420/13646
Journal
Advanced electronic materials  
Volume
8
Issue
9
Article Number
2200082
Citation
Advanced Electronic Materials 8 (9): 2200082 (2022-05-26)
Publisher DOI
10.1002/aelm.202200082
Scopus ID
2-s2.0-85130627275
Publisher
Wiley-VCH Verlag
Abstract
The spin‐dependent electrical transport in rigid inorganic‐inorganic layered systems is extensively applied for the detection of magnetic fields in data storage. In this work, spin‐dependent electrical transport in flexible organic‐inorganic supercrystals based on superparamagnetic iron oxide nanoparticles is investigated. These nanoparticles are stabilized by oleic acid ligands, which in turn are serving as tunneling barriers between individual magnetic nanoparticles. The resulting tunneling magnetoresistance (TMR) is tunable due to the elastic properties of these organic barriers. Applying external mechanical stress on this composite material will change the average distance between adjacent nanoparticles and will hence determine the resulting TMR‐effect amplitude. Thus, measured stress‐induced changes in the barrier thickness at sub‐nanometer scale allow for determining the mechanical properties of organic barrier molecules in the confined space between the particles. These results provide the foundation for a new type of mechanical sensor.
The electron transport in organic‐inorganic nanoparticles supercrystals through soft organic tunneling barriers depends on the barrier geometry which is influenced by the mechanical load on the nanomaterial. Changes in the barrier thickness at sub‐nanometer scale allow for determining the mechanical properties of organic barrier molecules in the confined space between the particles and open a new way of force sensing.


image
Subjects
force sensor
nanoparticle
organic barrier
supercrystal
tunneling conductance
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt C05 - Oxidische Hochtemperatur-Schutzschichtsysteme mittels angepasster Porenstruktur  
SFB 986: Teilprojekt A06 - Herstellung und Charakterisierung hierarchischer, multi-funktionaler Keramik/Metall-Polymer Materialsysteme  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

AELM_AELM202200082.pdf

Size

1.97 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback