Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4600
DC FieldValueLanguage
dc.contributor.authorDreyer, Axel-
dc.contributor.authorRempel, Thomas-
dc.contributor.authorGottschalk, Martin-
dc.contributor.authorZierold, Robert-
dc.contributor.authorWeimer, Agnes-
dc.contributor.authorFeld, Artur-
dc.contributor.authorSchneider, Gerold A.-
dc.contributor.authorWeller, Horst-
dc.contributor.authorHütten, Andreas-
dc.date.accessioned2022-09-22T10:53:58Z-
dc.date.available2022-09-22T10:53:58Z-
dc.date.issued2022-05-26-
dc.identifier.citationAdvanced Electronic Materials 8 (9) - (2022-05-26)de_DE
dc.identifier.issn2199-160Xde_DE
dc.identifier.urihttp://hdl.handle.net/11420/13646-
dc.description.abstractAbstract The spin‐dependent electrical transport in rigid inorganic‐inorganic layered systems is extensively applied for the detection of magnetic fields in data storage. In this work, spin‐dependent electrical transport in flexible organic‐inorganic supercrystals based on superparamagnetic iron oxide nanoparticles is investigated. These nanoparticles are stabilized by oleic acid ligands, which in turn are serving as tunneling barriers between individual magnetic nanoparticles. The resulting tunneling magnetoresistance (TMR) is tunable due to the elastic properties of these organic barriers. Applying external mechanical stress on this composite material will change the average distance between adjacent nanoparticles and will hence determine the resulting TMR‐effect amplitude. Thus, measured stress‐induced changes in the barrier thickness at sub‐nanometer scale allow for determining the mechanical properties of organic barrier molecules in the confined space between the particles. These results provide the foundation for a new type of mechanical sensor.en
dc.description.abstractThe electron transport in organic‐inorganic nanoparticles supercrystals through soft organic tunneling barriers depends on the barrier geometry which is influenced by the mechanical load on the nanomaterial. Changes in the barrier thickness at sub‐nanometer scale allow for determining the mechanical properties of organic barrier molecules in the confined space between the particles and open a new way of force sensing. imageen
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherWiley-VCH Verlagde_DE
dc.relation.ispartofAdvanced electronic materialsde_DE
dc.rightsCC BY-NC-ND 4.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subjectforce sensorde_DE
dc.subjectnanoparticlede_DE
dc.subjectorganic barrierde_DE
dc.subjectsupercrystalde_DE
dc.subjecttunneling conductancede_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleSpin‐ and Stress‐Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistancede_DE
dc.typeArticlede_DE
dc.date.updated2022-09-21T23:23:53Z-
dc.identifier.doi10.15480/882.4600-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0197253-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe spin‐dependent electrical transport in rigid inorganic‐inorganic layered systems is extensively applied for the detection of magnetic fields in data storage. In this work, spin‐dependent electrical transport in flexible organic‐inorganic supercrystals based on superparamagnetic iron oxide nanoparticles is investigated. These nanoparticles are stabilized by oleic acid ligands, which in turn are serving as tunneling barriers between individual magnetic nanoparticles. The resulting tunneling magnetoresistance (TMR) is tunable due to the elastic properties of these organic barriers. Applying external mechanical stress on this composite material will change the average distance between adjacent nanoparticles and will hence determine the resulting TMR‐effect amplitude. Thus, measured stress‐induced changes in the barrier thickness at sub‐nanometer scale allow for determining the mechanical properties of organic barrier molecules in the confined space between the particles. These results provide the foundation for a new type of mechanical sensor.de_DE
tuhh.publisher.doi10.1002/aelm.202200082-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.4600-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue9de_DE
tuhh.container.volume8de_DE
dc.rights.nationallicensefalsede_DE
tuhh.container.articlenumber2200082de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
dcterms.publisher.place-
local.funding.info192346071-SFB 986 (A1, A6, C5)de_DE
datacite.resourceTypeArticle-
datacite.resourceTypeGeneralJournalArticle-
item.openairetypeArticle-
item.grantfulltextopen-
item.mappedtypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDDreyer, Axel-
item.creatorGNDRempel, Thomas-
item.creatorGNDGottschalk, Martin-
item.creatorGNDZierold, Robert-
item.creatorGNDWeimer, Agnes-
item.creatorGNDFeld, Artur-
item.creatorGNDSchneider, Gerold A.-
item.creatorGNDWeller, Horst-
item.creatorGNDHütten, Andreas-
item.creatorOrcidDreyer, Axel-
item.creatorOrcidRempel, Thomas-
item.creatorOrcidGottschalk, Martin-
item.creatorOrcidZierold, Robert-
item.creatorOrcidWeimer, Agnes-
item.creatorOrcidFeld, Artur-
item.creatorOrcidSchneider, Gerold A.-
item.creatorOrcidWeller, Horst-
item.creatorOrcidHütten, Andreas-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0003-0292-0970-
crisitem.author.orcid0000-0001-9745-3185-
crisitem.author.orcid0000-0001-5780-6249-
crisitem.author.orcid0000-0003-2967-6955-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
AELM_AELM202200082.pdfVerlags-PDF2,02 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

50
checked on Oct 6, 2022

Download(s)

11
checked on Oct 6, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons