Please use this identifier to cite or link to this item:
Publisher URL:
Title: Object detection in picking: Handling variety of a warehouse’s articles
Language: English
Authors: Rieder, Mathias 
Breitmayer, Marius 
Editor: Kersten, Wolfgang  
Jahn, Carlos  
Blecker, Thorsten 
Ringle, Christian M.  
Keywords: Advanced Manufacturing; Industry 4.0
Issue Date: Sep-2022
Publisher: epubli
Source: Hamburg International Conference of Logistics (HICL) 33: 67-90 (2022)
Abstract (english): 
Purpose: The automation of picking is still a challenge as a high amount of flexibility is needed to handle different articles according to their requirements. Enabling robot picking in a dynamic warehouse environment consequently requires a sophisticated object detection system capable of handling a multitude of different articles.
Methodology: Testing the applicability of object detection approaches for logistics research started with few objects producing promising results. In the context of warehouse environments, the applicability of such approaches to thousands of different articles is still doubted. Using different approaches in parallel may enable handling a plethora of different articles as well as the maintenance of object detection approach in case of changes to articles or assortments occur.
Findings: Existing object detection algorithms are reliable if configured correctly. However, research in this field mostly focuses on a limited set of objects that need to be distinguished showing the functionality of the algorithm. Applying such algorithms in the context of logistics offers great potential, but also poses additional challenges. A huge variety of articles must be distinguished during picking, increasing complexity of the system with each article. A combination of different Convolutional Neural Networks may solve the problem.
Originality: The suitability of existing object detection algorithms originates from research on automation of established processes in existing warehouses. A process model was already introduced enabling the transformation of laboratory trained CNNs to industrial warehouses. Experiments with CNNs according to this approach are published now.
Conference: Hamburg International Conference of Logistics (HICL) 2022 
DOI: 10.15480/882.4688
ISBN: 978-3-756541-95-9
ISSN: 2365-5070
Document Type: Chapter/Article (Proceedings)
Peer Reviewed: Yes
License: CC BY-SA 4.0 (Attribution-ShareAlike 4.0) CC BY-SA 4.0 (Attribution-ShareAlike 4.0)
Part of Series: Proceedings of the Hamburg International Conference of Logistics (HICL) 
Volume number: 33
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Rieder and Breitmayer (2022) - Object Detection in Picking_Handling variety of a warehouse’s articles.pdfObject Detection in Picking_Handling variety of a warehouse’s articles1,35 MBAdobe PDFView/Open
Show full item record

Page view(s)

checked on Dec 9, 2022


checked on Dec 9, 2022

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons