TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Workload forecasting of a logistic node using Bayesian neural networks
 
Options

Workload forecasting of a logistic node using Bayesian neural networks

Citation Link: https://doi.org/10.15480/882.4694
Publikationstyp
Conference Paper
Date Issued
2022-09
Sprache
English
Author(s)
Nakilcioglu, Emin Cagatay 
Rizvanolli, Anisa 
Rendel, Olaf 
Herausgeber*innen
Kersten, Wolfgang  orcid-logo
Jahn, Carlos  orcid-logo
Blecker, Thorsten  orcid-logo
Ringle, Christian M.  orcid-logo
TORE-DOI
10.15480/882.4694
TORE-URI
http://hdl.handle.net/11420/13910
First published in
Proceedings of the Hamburg International Conference of Logistics (HICL)  
Number in series
33
Start Page
237
End Page
264
Citation
Hamburg International Conference of Logistics (HICL) 33: 237-264 (2022)
Contribution to Conference
Hamburg International Conference of Logistics (HICL) 2022  
Publisher Link
https://www.epubli.de/shop/buch/changing-tides-the-new-role-of-resilience-and-sustainability-in-logistics-and-supply-chain-management-wolfgang-kersten-9783756541959/130939
Publisher
epubli
Peer Reviewed
true
Purpose: Traffic volume in empty container depots has been highly volatile due to external factors. Forecasting the expected container truck traffic along with having a dynamic module to foresee the future workload plays a critical role in improving the work efficiency. This paper studies the relevant literature and designs a forecasting model addressing the aforementioned issues.
Methodology: The paper develops a forecasting model to predict hourly work and traffic volume of container trucks in an empty container depot using a Bayesian Neural Network based model. Furthermore, the paper experiments with datasets with different characteristics to assess the model’s forecasting range for various data sources.
Findings: The real data of an empty container depot is utilized to develop a forecasting model and to later verify the capabilities of the model. The findings show the performance validity of the model and provide the groundwork to build an effective traffic and workload planning system for the empty container depot in question.
Originality: This paper proposes a Bayesian deep learning-based forecasting model for traffic and workload of an empty container depot using real-world data. This designed and implemented forecasting model offers a solution with which every actor in the container truck transportation benefits from the optimized workload.
Subjects
Artificial Intelligence
Blockchain
DDC Class
380: Handel, Kommunikation, Verkehr
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-sa/4.0/
Loading...
Thumbnail Image
Name

Nakilcioglu et al. (2022) - Workload Forecasting of a Logistic Node Using Bayesian Neural Networks.pdf

Size

933.25 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback