TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Splitting-tests of laboratory-made granular ice with a propeller-like indenter
 
Options

Splitting-tests of laboratory-made granular ice with a propeller-like indenter

Publikationstyp
Conference Paper
Date Issued
2022-06
Sprache
English
Author(s)
Böhm, Angelo  orcid-logo
Herrnring, Hauke  orcid-logo
von Bock und Polach, Rüdiger Ulrich Franz  orcid-logo
Institut
Konstruktion und Festigkeit von Schiffen M-10  
TORE-URI
http://hdl.handle.net/11420/14177
Article Number
V006T07A013
Citation
ASME 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2022)
Contribution to Conference
ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2022  
Publisher DOI
10.1115/OMAE2022-87434
Scopus ID
2-s2.0-85140902813
Global warming will decline the sea ice in the upcoming decades. However, sea ice will prevail long enough in the sub-arctic and polar regions to remain a challenge for the shipping industry and arctic engineers. The decline in sea ice makes some economically interesting routes through ice-covered water more accessible. Still, at the same time, climatic changes can cause more dynamics of ice sheets and ice features. Therefore a bet-ter understanding of ice-propeller interaction is required with experimentally validated simulations. Propeller contact loads can be classified into milling loads and impact loads. The in-put ice property for existing numerical models of propeller ice interaction is usually the compressive strength at relatively low strain rates representing the impact scenario. Independent from the applied interaction velocity, a compressive test does not de-scribe the milling type interaction well, which is characterized by fracture and splitting of the ice. This paper describes the splitting-Test of laboratory-made granular ice with a propeller-like indenter. Splitting-Tests of granular ice specimens show no dependence on the L/D ratio. The force measurement during the splitting-Tests shows a dependency on the thickness of the inden-ter and, in addition, for the 6 mm wide indenter, a rate depen-dency. The force measurement of the splitting-Test with the 3 mm wide indenter shows no rate dependency. The higher specific strain energies in splitting-Tests of ice could lead to the lower measured forces.
Funding(s)
Entwicklung und Simulation eines Mehrskalen-Materialmodells für das spröde Verhalten von Eis bei Struktur-Interaktion  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback