TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Diffusionlike Drying of a Nanoporous Solid as Revealed by Magnetic Resonance Imaging
 
Options

Diffusionlike Drying of a Nanoporous Solid as Revealed by Magnetic Resonance Imaging

Publikationstyp
Journal Article
Date Issued
2022-11
Sprache
English
Author(s)
Maillet, Benjamin  
Dittrich, Guido  
Huber, Patrick  orcid-logo
Coussot, Philippe  
Institut
Material- und Röntgenphysik M-2  
TORE-URI
http://hdl.handle.net/11420/14326
Journal
Physical review applied  
Volume
18
Issue
5
Article Number
054027
Citation
Physical Review Applied 18 (5): 054027 (2022-11)
Publisher DOI
10.1103/PhysRevApplied.18.054027
Scopus ID
2-s2.0-85143196607
Drying plays a central role in various fabrication processes and applications of functional nanoporous materials, most prominently in relation to energy storage and conversion. During such processes, liquid coexists with air inside the sample, leading to transport as a result of concentration gradients of vapor and/or liquid. Experimentally, it is extremely challenging to unravel this transport phenomenology inside the hidden geometry of porous media. Here, we observe the drying of a model nanoporous material (monolithic mesoporous silica glass, Vycor) with magnetic resonance imaging. We show that, for various boundary conditions (air-flux intensities), no dry region develops, but the sample desaturates in depth. This desaturation is almost homogeneous throughout the sample for weak air flux, while saturation gradients can be observed for sufficiently strong air flux. We demonstrate that the transport of water is mainly ensured by liquid flow towards the free surface, resulting from a gradient of vapor pressure, associated with local saturation (via the desorption curve), leading to a gradient of liquid pressure (via the Kelvin law). Assuming otherwise standard hydrodynamic characteristics of the nanoconfined liquid, this results in a diffusionlike model, which appears to represent experimental data very well in terms of the spatial distribution of water over time inside the sample for various boundary conditions (air-flux intensities). Finally, we propose a predictive model of the detailed drying characteristics of a nanomaterial from knowledge of its pore size, permeability, and desorption curve. This provides an insight into the rational design of drying-based processes employing functional nanoporous materials and allows for a mechanistic understanding of drying phenomenologies in natural nanoporous media.
DDC Class
620: Ingenieurwissenschaften
Funding(s)
Energy harvesting via wetting/drying cycles with nanoporous electrodes  
SFB 986: Teilprojekt B07 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen  
SFB 986: Teilprojekt C10 - Photonische Metamaterialien mit anpassbarer und schaltbarer Anisotropie durch Funktionalisierung von porösen Festkörpern mit Flüssigkristallen  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback