Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.141
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-02-17T10:21:52Zde_DE
dc.date.available2006-02-17T10:21:52Zde_DE
dc.date.issued2003-08-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/143-
dc.description.abstractExploiting minmax characterizations for nonoverdamped nonlinear eigenvalue problems we prove inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in a fluid. The fluid is assumed to be viscous and incompressible, and its velocity field and pressure satisfy the steady Stokes equations.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjecteigenvalue boundsde_DE
dc.subjectminmax principlede_DE
dc.subjectmaxmin principlede_DE
dc.subjectfluid structure interactionde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleLocating real eigenvalues of a spectral problem in fluid-solid type structuresde_DE
dc.typePreprintde_DE
dc.date.updated2006-03-16T09:26:37Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2022de_DE
dc.identifier.doi10.15480/882.141-
dc.type.dinipreprint-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndSpektralmatrixde
dc.subject.gndMinimaxlösungde
dc.subject.ddccode510-
dc.subject.msc35P30:Nonlinear eigenvalue problems, nonlinear spectral theory for PDOen
dc.subject.msccode35P30-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2022de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id202de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/143-
tuhh.abstract.englishExploiting minmax characterizations for nonoverdamped nonlinear eigenvalue problems we prove inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in a fluid. The fluid is assumed to be viscous and incompressible, and its velocity field and pressure satisfy the steady Stokes equations.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.141-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverpreprint-
dc.identifier.oclc930768105-
dc.type.casraiOther-
dc.rights.nationallicensefalsede_DE
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber64de_DE
datacite.relation.IsPreviousVersionOfdoi: 10.1155/JAM.2005.37-
local.status.inpressfalsede_DE
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.creatorOrcidVoß, Heinrich-
item.cerifentitytypePublications-
item.seriesrefPreprints des Institutes für Mathematik;64-
item.mappedtypePreprint-
item.openairetypePreprint-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.creatorGNDVoß, Heinrich-
item.languageiso639-1en-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep64.pdf153,65 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

328
Last Week
0
Last month
4
checked on Dec 1, 2021

Download(s)

175
checked on Dec 1, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.