TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. How nanoporous silicon-polypyrrole hybrids flex their muscles in aqueous electrolytes: in operando high-resolution x-ray diffraction and electron tomography-based micromechanical computer simulations
 
Options

How nanoporous silicon-polypyrrole hybrids flex their muscles in aqueous electrolytes: in operando high-resolution x-ray diffraction and electron tomography-based micromechanical computer simulations

Citation Link: https://doi.org/10.15480/882.5205
Publikationstyp
Journal Article
Date Issued
2022-11-28
Sprache
English
Author(s)
Brinker, Manuel  orcid-logo
Thelen, Marc  orcid-logo
May, Manfred  
Rings, Dagmar 
Krekeler, Tobias  
Lakner, Pirmin  
Keller, Thomas F.  
Bertram, Florian  
Huber, Norbert  orcid-logo
Huber, Patrick  orcid-logo
Institut
Material- und Röntgenphysik M-2  
Betriebseinheit Elektronenmikroskopie M-26  
Werkstoffphysik und -technologie M-22  
TORE-DOI
10.15480/882.5205
TORE-URI
http://hdl.handle.net/11420/14454
Journal
Physical review materials  
Volume
6
Issue
11
Article Number
116002
Citation
Physical Review Materials 6 (11): 116002 (2022-11)
Publisher DOI
10.1103/PhysRevMaterials.6.116002
Scopus ID
2-s2.0-85143731741
Publisher
APS
Is Supplemented By
10.15480/336.4675
Macroscopic strain experiments have revealed that silicon crystals traversed by parallel, channel-like nanopores functionalized with the artificial muscle polymer polypyrrole (PPy) exhibit large and reversible electrochemomechanical actuation in aqueous electrolytes. On a macroscopic scale these actuation properties are well understood. However, on the microscopical level this system still bears open questions, as to how the electrochemical expansion and contraction of PPy acts on to np-Si pore walls and how the collective motorics of the pore array emerges from the single-nanopore behavior. Here we present synchrotron-based, in operando x-ray diffraction on the evolving electrostrains in epilayers of this material grown on bulk silicon. An analysis of these experiments with micromechanical finite-element simulations, that are based on a full three-dimensional reconstruction of the nanoporous medium by transmission electron microscopy (TEM) tomography, shows that the in-plane mechanical response is dominantly isotropic despite the anisotropic elasticity of the single-crystalline host matrix. However, the structural anisotropy originating from the parallel alignment of the nanopores led to significant differences between the in- and out-of-plane electromechanical response. This response is not describable by a simple two-dimensional arrangement of parallel cylindrical channels. Rather, the simulations highlight that the dendritic shape of the silicon pore walls, including pore connections between the main channels, causes complex, highly inhomogeneous stress-strain fields in the crystalline host. Time-dependent x-ray scattering experiments on the dynamics of the actuator properties hint towards the importance of diffusion limitations, plastic deformation, and creep in the nanoconfined polymer upon (counter)ion adsorption and desorption, the very pore-scale processes causing the macroscopic electroactuation. From a more general perspective, our study demonstrates that the combination of TEM tomography-based micromechanical modeling with high-resolution x-ray scattering experiments provides a powerful approach for in operando analysis of nanoporous composites from the single nanopore up to the porous-medium scale.
DDC Class
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt B07 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen  
SFB 986: Teilprojekt B04 - Mikromechanisches Materialverhalten hierarchischer Werkstoffe  
SFB 986: Zentralprojekt Z02 - Untersuchung multiskalig strukturierter Materialsysteme mit Synchrotron- und Neutronenstrahlung  
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Energy harvesting via wetting/drying cycles with nanoporous electrodes  
Thermoelektrische Hybridmaterialien basierend auf porösem Silizium: der Zusammenhang zwischen makroskopischen Transportphänomenen und mikroskopischer Struktur und elementaren Anregungen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

PhysRevMaterials.6.116002.pdf

Size

4.03 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback