Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4826
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorMendiguchia Meuser, Maximilian-
dc.contributor.authorLührs, Benjamin-
dc.contributor.authorGollnick, Volker-
dc.contributor.authorLinke, Florian-
dc.contributor.authorMatthes, Sigrun-
dc.contributor.authorDietmüller, Simone-
dc.contributor.authorBaumann, Sabine-
dc.contributor.authorSoler, Manuel-
dc.contributor.authorSimorgh, Abolfazl-
dc.contributor.authorYin, Feijia-
dc.contributor.authorCastino, Federica-
dc.date.accessioned2023-01-09T13:55:43Z-
dc.date.available2023-01-09T13:55:43Z-
dc.date.issued2022-09-
dc.identifier.citation33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022, Stockholm, Sweden, 4-9 September, 2022de_DE
dc.identifier.urihttp://hdl.handle.net/11420/14508-
dc.description.abstractAircraft trajectories are currently flown and optimized to reduce operating costs, keeping engine CO2-emissions from burnt fuel at a minimum by following fuel optimized routes under consideration of wind. However, research has shown that the location and time of non-CO2 emissions such as NOx, water vapor or the formation of contrail cirrus contribute to about two thirds of aviation’s induced climate impact [1]. Consequently, one option to reduce this impact on a short time horizon is operational measures that aim to optimize aircraft trajectories with regard to climate impact by avoiding atmospheric regions that are especially sensitive to non-CO2 emissions from aviation. For this purpose, the effects of individual emission species need to be quantified in order to assess the mitigation potential by climate-optimized routing. For this reason, multi-dimensional algorithmic climate change functions, which allow for the quantification of the climate impact of emissions, based on meteorological parameters which a e available from weather forecast data is used. These algorithmic climate change functions are integrated into the cost functional of a trajectory planning algorithm which is based on an optimal control approach and applied in order to estimate climate optimized aircraft trajectories trading climate impact reduction against cost increase. Since the climate impact and therefore the algorithmic climate change functions are highly dependent on the prevailing atmospheric conditions, particularly the formation of contrail cirrus, weather prediction uncertainties are considered in order to determine robust eco efficient trajectories. Within this study, the methodology and optimization applied to determine such a robust solution are presented and results are analyzed for an exemplary intra-European flight route.en
dc.description.sponsorshipSingle European Sky ATM Research Programmede_DE
dc.language.isoende_DE
dc.publisherICASde_DE
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/de_DE
dc.subjectclimate impactde_DE
dc.subjectaviation emissionsde_DE
dc.subjecttrajectory optimizationde_DE
dc.subject.ddc380: Handel, Kommunikation, Verkehrde_DE
dc.subject.ddc550: Geowissenschaftende_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleMitigation of aviation’s climate impact through robust climate optimized trajectories in intra-european airspacede_DE
dc.typeConferencePaper_not_in_proceedingsde_DE
dc.identifier.doi10.15480/882.4826-
dc.type.diniOther-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0207756-
tuhh.oai.showtruede_DE
tuhh.abstract.englishAircraft trajectories are currently flown and optimized to reduce operating costs, keeping engine CO2-emissions from burnt fuel at a minimum by following fuel optimized routes under consideration of wind. However, research has shown that the location and time of non-CO2 emissions such as NOx, water vapor or the formation of contrail cirrus contribute to about two thirds of aviation’s induced climate impact [1]. Consequently, one option to reduce this impact on a short time horizon is operational measures that aim to optimize aircraft trajectories with regard to climate impact by avoiding atmospheric regions that are especially sensitive to non-CO2 emissions from aviation. For this purpose, the effects of individual emission species need to be quantified in order to assess the mitigation potential by climate-optimized routing. For this reason, multi-dimensional algorithmic climate change functions, which allow for the quantification of the climate impact of emissions, based on meteorological parameters which a e available from weather forecast data is used. These algorithmic climate change functions are integrated into the cost functional of a trajectory planning algorithm which is based on an optimal control approach and applied in order to estimate climate optimized aircraft trajectories trading climate impact reduction against cost increase. Since the climate impact and therefore the algorithmic climate change functions are highly dependent on the prevailing atmospheric conditions, particularly the formation of contrail cirrus, weather prediction uncertainties are considered in order to determine robust eco efficient trajectories. Within this study, the methodology and optimization applied to determine such a robust solution are presented and results are analyzed for an exemplary intra-European flight route.de_DE
tuhh.publication.instituteLufttransportsysteme M-28de_DE
tuhh.identifier.doi10.15480/882.4826-
tuhh.type.opusConferencePaper_not_in_proceedings-
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
dc.type.driverother-
dc.type.casraiOther-
dc.relation.conference33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022de_DE
dc.relation.projectFlying Air Traffic Management for the benefit of environment and climatede_DE
dc.rights.nationallicensefalsede_DE
local.contributorCorporate.editorTechnische Universität Hamburg-Harburg-
local.contributorCorporate.editorDeutsches Zentrum für Luft- und Raumfahrt (DLR)-
local.contributorCorporate.editorTechnische Universität Delft-
local.status.inpressfalsede_DE
local.type.versionacceptedVersionde_DE
local.publisher.peerreviewedtruede_DE
datacite.resourceTypeConferencePaper_not_in_proceedings-
datacite.resourceTypeGeneralText-
item.mappedtypeConferencePaper_not_in_proceedings-
item.creatorOrcidMendiguchia Meuser, Maximilian-
item.creatorOrcidLührs, Benjamin-
item.creatorOrcidGollnick, Volker-
item.creatorOrcidLinke, Florian-
item.creatorOrcidMatthes, Sigrun-
item.creatorOrcidDietmüller, Simone-
item.creatorOrcidBaumann, Sabine-
item.creatorOrcidSoler, Manuel-
item.creatorOrcidSimorgh, Abolfazl-
item.creatorOrcidYin, Feijia-
item.creatorOrcidCastino, Federica-
item.languageiso639-1en-
item.openairetypeConferencePaper_not_in_proceedings-
item.contributorCorpRORTechnische Universität Hamburg-Harburg-
item.contributorCorpRORDeutsches Zentrum für Luft- und Raumfahrt (DLR)-
item.contributorCorpRORTechnische Universität Delft-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.creatorGNDMendiguchia Meuser, Maximilian-
item.creatorGNDLührs, Benjamin-
item.creatorGNDGollnick, Volker-
item.creatorGNDLinke, Florian-
item.creatorGNDMatthes, Sigrun-
item.creatorGNDDietmüller, Simone-
item.creatorGNDBaumann, Sabine-
item.creatorGNDSoler, Manuel-
item.creatorGNDSimorgh, Abolfazl-
item.creatorGNDYin, Feijia-
item.creatorGNDCastino, Federica-
item.cerifentitytypePublications-
item.contributorCorpGNDTechnische Universität Hamburg-Harburg-
item.contributorCorpGNDDeutsches Zentrum für Luft- und Raumfahrt (DLR)-
item.contributorCorpGNDTechnische Universität Delft-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.corporateEditor.crossrefid501100002946-
crisitem.corporateEditor.rorid04bwf3e34-
crisitem.project.funderEuropean Commission-
crisitem.project.funderid501100000780-
crisitem.project.funderrorid00k4n6c32-
crisitem.project.grantno891317-
crisitem.project.fundingProgramH2020-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/891317-
crisitem.author.deptLufttransportsysteme M-28-
crisitem.author.deptLufttransportsysteme M-28-
crisitem.author.deptLufttransportsysteme M-28-
crisitem.author.deptLufttransportsysteme M-28-
crisitem.author.orcid0000-0002-2993-4400-
crisitem.author.orcid0000-0002-4059-6959-
crisitem.author.orcid0000-0001-7214-0828-
crisitem.author.orcid0000-0003-1403-3471-
crisitem.author.orcid0000-0002-5114-2418-
crisitem.author.orcid0000-0002-4569-4443-
crisitem.author.orcid0000-0002-4664-1693-
crisitem.author.orcid0000-0002-8374-4915-
crisitem.author.orcid0000-0002-6081-9136-
crisitem.author.orcid0000-0002-7069-0356-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
ICAS2022_0574.pdf2,1 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

88
checked on May 30, 2023

Download(s)

44
checked on May 30, 2023

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.