TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Numerical and experimental analysis of fatigue-induced changes in ultra-high performance concrete
 
Options

Numerical and experimental analysis of fatigue-induced changes in ultra-high performance concrete

Publikationstyp
Conference Paper
Date Issued
2022-09
Sprache
English
Author(s)
Rybczynski, Sebastian  
Schmidt-Döhl, Frank  orcid-logo
Schaan, Gunnar  
Ritter, Martin  orcid-logo
Dosta, Maksym  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Baustoffe, Bauphysik und Bauchemie B-3  
Betriebseinheit Elektronenmikroskopie M-26  
TORE-URI
http://hdl.handle.net/11420/14612
Start Page
1320
End Page
1326
Citation
8th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2022): 1322-1326
Contribution to Conference
8th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2022  
Publisher DOI
10.1201/9781003348443-215
Scopus ID
2-s2.0-85145551533
Publisher
CRC Press.
ISBN
978-1-003-34844-3
978-1-000-82436-0
978-1-000-82432-2
978-1-032-18698-6
This contribution deals with experimental and numerical results on the fatigue behavior of Ultra-High Performance Concrete (UHPC). In order to characterize fatigue-induced changes in detail, UHPC samples were examined using scanning and transmission electron microscopy (SEM and TEM). It could be shown that a densification of the binder matrix occurs caused by a transformation of nanoscale ettringite, and the content of unhydrated cement clinker influences the fatigue resistance of UHPC. For numerical investigations of the mechanical behavior of UHPC, the Bonded-Particle Model (BPM) has been used and calibrated with experimental data. The mesoscopic BPM model consists of three phases: Matrix, ITZ (Interfacial Transition Zone), and aggregate. A newly derived rheological fatigue formulation for binder and ITZ bonds was developed to apply small scale-changes and plastic deformations to reproduce the correct fatigue behavior.
DDC Class
600: Technology
Funding(s)
SPP 2020: Zyklische Schädigungsprozesse in Hochleistungsbetonen im Experimental-Virtual-Lab  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback