DC FieldValueLanguage
dc.contributor.authorHerzog, Christian-
dc.contributor.authorWerner, Herbert-
dc.date.accessioned2023-01-24T16:32:25Z-
dc.date.available2023-01-24T16:32:25Z-
dc.date.issued2014-
dc.identifier.citationIFAC Proceedings Volumes 19: 6147-6152 (2014)de_DE
dc.identifier.isbn9783902823625de_DE
dc.identifier.issn1474-6670de_DE
dc.identifier.urihttp://hdl.handle.net/11420/14656-
dc.description.abstractIn standard linear fractional representation (LFR)-based linear parameter-varying (LPV) modeling the size of the (diagonal) scheduling block depends on the number of scheduling parameters and their repetitions, which in turn influences both the complexity of synthesis conditions and the computational load during online implementation of LPV controllers. A modeling framework motivated by, but not limited to, mechanical systems is proposed, where the size of the scheduling block depends on the system's physical degrees-of-freedom. The scheduling block then turns out block-diagonal and can be parameterized in an affine or rational manner. This parameterization yields less complex LFRs when considering the example of a three degrees-of-freedom robotic manipulator, for which then full-block multipliers are tractable and also necessary in synthesis. Synthesis and both simulation and experimental implementation results indicate that the novel rational LPV controller provides improved performance at both reduced implementation and synthesis complexity as compared to an affine LPV controller.en
dc.language.isoende_DE
dc.relation.ispartofIFAC Proceedings Volumesde_DE
dc.titleLinear parameter-varying control of complex mechanical systemsde_DE
dc.typeinProceedingsde_DE
dc.type.dinicontributionToPeriodical-
dcterms.DCMITypeText-
tuhh.abstract.englishIn standard linear fractional representation (LFR)-based linear parameter-varying (LPV) modeling the size of the (diagonal) scheduling block depends on the number of scheduling parameters and their repetitions, which in turn influences both the complexity of synthesis conditions and the computational load during online implementation of LPV controllers. A modeling framework motivated by, but not limited to, mechanical systems is proposed, where the size of the scheduling block depends on the system's physical degrees-of-freedom. The scheduling block then turns out block-diagonal and can be parameterized in an affine or rational manner. This parameterization yields less complex LFRs when considering the example of a three degrees-of-freedom robotic manipulator, for which then full-block multipliers are tractable and also necessary in synthesis. Synthesis and both simulation and experimental implementation results indicate that the novel rational LPV controller provides improved performance at both reduced implementation and synthesis complexity as compared to an affine LPV controller.de_DE
tuhh.publisher.doi10.3182/20140824-6-za-1003.00118-
tuhh.publication.instituteRegelungstechnik E-14de_DE
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.volume19de_DE
tuhh.container.startpage6147de_DE
tuhh.container.endpage6152de_DE
dc.identifier.scopus2-s2.0-84929832471-
datacite.resourceTypeGeneralConferencePaper-
item.mappedtypeinProceedings-
item.fulltextNo Fulltext-
item.creatorGNDHerzog, Christian-
item.creatorGNDWerner, Herbert-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.creatorOrcidHerzog, Christian-
item.creatorOrcidWerner, Herbert-
item.openairetypeinProceedings-
crisitem.author.deptRegelungstechnik E-14-
crisitem.author.deptRegelungstechnik E-14-
crisitem.author.orcid0000-0003-2513-2563-
crisitem.author.orcid0000-0003-3456-5539-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

15
checked on Mar 21, 2023

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.