TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Linear parameter-varying control of complex mechanical systems
 
Options

Linear parameter-varying control of complex mechanical systems

Publikationstyp
Conference Paper
Date Issued
2014
Sprache
English
Author(s)
Hoffmann, Christian  
Werner, Herbert  
Institut
Regelungstechnik E-14  
TORE-URI
http://hdl.handle.net/11420/14656
Journal
IFAC Proceedings Volumes  
Volume
19
Start Page
6147
End Page
6152
Citation
IFAC Proceedings Volumes 19: 6147-6152 (2014)
Publisher DOI
10.3182/20140824-6-za-1003.00118
Scopus ID
2-s2.0-84929832471
In standard linear fractional representation (LFR)-based linear parameter-varying (LPV) modeling the size of the (diagonal) scheduling block depends on the number of scheduling parameters and their repetitions, which in turn influences both the complexity of synthesis conditions and the computational load during online implementation of LPV controllers. A modeling framework motivated by, but not limited to, mechanical systems is proposed, where the size of the scheduling block depends on the system's physical degrees-of-freedom. The scheduling block then turns out block-diagonal and can be parameterized in an affine or rational manner. This parameterization yields less complex LFRs when considering the example of a three degrees-of-freedom robotic manipulator, for which then full-block multipliers are tractable and also necessary in synthesis. Synthesis and both simulation and experimental implementation results indicate that the novel rational LPV controller provides improved performance at both reduced implementation and synthesis complexity as compared to an affine LPV controller.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback