Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.145
Publisher DOI: 10.1023/B:BITN.0000039424.56697.8b
Title: An Arnoldi method for nonlinear eigenvalue problems
Language: English
Authors: Voß, Heinrich 
Keywords: nonlinear eigenvalue problem;iterative projection method;residual inverse iteration
Issue Date: Feb-2003
Source: Preprint. Published in: BIT Numerical Mathematics, May 2004, Volume 44, Issue 2, pp 387–401
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 56
Abstract (english): For the nonlinear eigenvalue problem T(lambda)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.
URI: http://tubdok.tub.tuhh.de/handle/11420/147
DOI: 10.15480/882.145
Institute: Mathematik E-10 
Type: ResearchPaper
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
rep56.pdf201,77 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

242
Last Week
1
Last month
1
checked on May 23, 2019

Download(s)

164
checked on May 23, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.