Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.145
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-02-17T13:36:04Zde_DE
dc.date.available2006-02-17T13:36:04Zde_DE
dc.date.issued2003-02-
dc.identifier.citationPreprint. Published in: BIT Numerical Mathematics, May 2004, Volume 44, Issue 2, pp 387–401de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/147-
dc.description.abstractFor the nonlinear eigenvalue problem T(lambda)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 56-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjectiterative projection methodde_DE
dc.subjectresidual inverse iterationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleAn Arnoldi method for nonlinear eigenvalue problemsde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-02-27T11:17:25Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2067de_DE
dc.identifier.doi10.15480/882.145-
dc.type.diniworkingPaper-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndProjektionsverfahrende
dc.subject.gndInversion <Mathematik>de
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2067de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id206de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/147-
tuhh.abstract.englishFor the nonlinear eigenvalue problem T(lambda)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.de_DE
tuhh.publisher.doi10.1023/B:BITN.0000039424.56697.8b-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.145-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverworkingPaper-
dc.identifier.oclc930768071-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber56de_DE
dc.identifier.scopus2-s2.0-4444266799-
datacite.resourceTypeWorking Paper-
datacite.resourceTypeGeneralText-
item.seriesrefPreprints des Institutes für Mathematik;56-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypeWorking Paper-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.creatorGNDVoß, Heinrich-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.mappedtypeWorking Paper-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep56.pdf201,77 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

479
Last Week
1
Last month
7
checked on Dec 5, 2022

Download(s)

533
checked on Dec 5, 2022

SCOPUSTM   
Citations

121
Last Week
1
Last month
2
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.