Publisher DOI: | 10.1302/0301-620X.105B3.BJJ-2022-1011.R1 | Title: | Impaction procedure influences primary stability of acetabular press-fit components | Language: | English | Authors: | Ruhr, Miriam Huber, Gerd Niki, Yasaman Lohner, Larissa Ondruschka, Benjamin Morlock, Michael |
Issue Date: | 1-Mar-2023 | Publisher: | British Editorial Society of Bone and Joint Surgery | Source: | The bone & joint journal 105-B (3): 261-268 (2023-03-01) | Abstract (english): | The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R2 = 0.77), with a similar trend for overimpaction (p = 0.082, R2 = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R2 = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies. |
URI: | http://hdl.handle.net/11420/15029 | ISSN: | 2049-4408 | Journal: | Bone & joint journal | Institute: | Biomechanik M-3 | Document Type: | Article |
Appears in Collections: | Publications without fulltext |
Show full item record
Google ScholarTM
Check
Add Files to Item
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.