TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. On the minimum degree of minimal Ramsey graphs for cliques versus cycles
 
Options

On the minimum degree of minimal Ramsey graphs for cliques versus cycles

Publikationstyp
Journal Article
Date Issued
2023-01
Sprache
English
Author(s)
Bishnoi, Anurag  
Boyadzhiyska, Simona  
Clemens, Dennis  orcid-logo
Gupta, Pranshu  
Lesgourgues, Thomas  
Liebenau, Anita  
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/15034
Journal
SIAM journal on discrete mathematics  
Volume
37
Issue
1
Start Page
25
End Page
50
Citation
SIAM Journal on Discrete Mathematics 37 (1): 25-50 (2023-01)
Publisher DOI
10.1137/21M1444953
Scopus ID
2-s2.0-85147997501
Publisher
Soc.
A graph G is said to be q-Ramsey for a q-tuple of graphs (H1,..., Hq), denoted by G →q (H1,..., Hq), if every q-edge-coloring of G contains a monochromatic copy of Hi in color i for some i ε [q]. Let sq(H1,..., Hq) denote the smallest minimum degree of G over all graphs G that are minimal q-Ramsey for (H1,..., Hq) (with respect to subgraph inclusion). The study of this parameter was initiated in 1976 by Burr, Erdos, and Lovasz, who determined its value precisely for a pair of cliques. Over the past two decades the parameter sq has been studied by several groups of authors, their main focus being on the symmetric case, where Hi ≅ H for all i ε [q]. The asymmetric case, in contrast, has received much less attention. In this paper, we make progress in this direction, studying asymmetric tuples consisting of cliques, cycles, and trees. We determine s2(H1, H2) when (H1, H2) is a pair of one clique and one tree, a pair of one clique and one cycle, and a pair of two different cycles. We also generalize our results to multiple colors and obtain bounds on sq(Cℓ,..., Cℓ, Kt,..., Kt) in terms of the size of the cliques t, the number of cycles, and the number of cliques. Our bounds are tight up to logarithmic factors when two of the three parameters are fixed.
Subjects
cliques
cycles
minimum degree
Ramsey theory
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback