TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Compression fracture of CFRP laminates containing stress intensifications
 
Options

Compression fracture of CFRP laminates containing stress intensifications

Citation Link: https://doi.org/10.15480/882.1502
Publikationstyp
Journal Article
Date Issued
2017-09-05
Sprache
English
Author(s)
Leopold, Christian  orcid-logo
Schütt, Martin  
Liebig, Wilfried V.  orcid-logo
Philipkowski, Timo  
Kürten, Jonas  
Schulte, Karl  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-DOI
10.15480/882.1502
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/1505
Journal
Materials  
Volume
10
Issue
9
Start Page
1039
Citation
Materials 10(2017),9: 1039
Publisher DOI
10.3390/ma10091039
Scopus ID
2-s2.0-85029006717
Publisher
MDPI
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.
Subjects
compression after impact (CAI)
fractography
free-edge
kink-band
open-hole
scaling
scanning electron microscopy (SEM)
stacking sequence
DDC Class
620: Ingenieurwissenschaften
Funding(s)
Open Access Publizieren 2016 - 2017 / Technische Universität Hamburg-Harburg  
Schadenstolerante dünnschichtige (Thin-Ply) Kohlenstofffaser-Kunststoff-Verbunde mit Graphen-verstärktem Matrixsystem  
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

materials-10-01039-v2.pdf

Size

4.8 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback