Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1504
Publisher DOI: 10.3390/min7110225
Title: PGE production in Southern Africa, part II: Environmental aspects
Language: English
Authors: Buchspies, Benedikt 
Thormann, Lisa 
Mbohwa, Charles 
Kaltschmitt, Martin 
Keywords: mining;platinum group metals (PGE);South Africa;Zimbabwe;environmental assessment;greenhouse gas (GHG) emissions;sulfur dioxide emissions;cumulative energy demand (fossil);water demand
Issue Date: 18-Nov-2017
Publisher: Multidisciplinary Digital Publishing Institute
Source: Minerals 7(2017)11: 225
Journal or Series Name: Minerals 
Abstract (english): Platinum group elements (PGEs, 6E PGE = Pt + Pd + Rh + Ru + Ir + Au) are used in numerous applications that seek to reduce environmental impacts of mobility and energy generation. Consequently, the future demand for PGEs is predicted to increase. Previous studies indicate that environmental impacts of PGE production change over time emphasizing the need of up-to-date data and assessments. In this context, an analysis of environmental aspects of PGE production is needed to support the environmental assessment of technologies using PGEs, to reveal environmental hotspots within the production chain and to identify optimization potential. Therefore, this paper assesses greenhouse gas (GHG) emissions, cumulative fossil energy demand (CEDfossil), sulfur dioxide (SO2) emissions and water use of primary PGE production in Southern Africa, where most of today’s supply originates from. The analysis shows that in 2015, emissions amounted to 45 t CO2-eq. and 502 kg SO2 per kg 6E PGE in the case GHG and SO2 emissions, respectively. GHG emissions are dominated by emissions from electricity provision contributing more than 90% to the overall GHG emissions. The CEDfossil amounted to 0.60 TJ per kg 6E PGE. A detailed analysis of the CEDfossil reveals that electricity provision based on coal power consumes the most fossil energy carriers among all energy forms. Results show that the emissions are directly related to the electricity demand. Thus, the reduction in the electricity demand presents the major lever to reduce the consumption of fossil energy resources and the emission of GHGs and SO2. In 2015, the water withdrawal amounted to 0.272 million L per kg 6E PGE. Additionally, 0.402 million L of recycled water were used per kg 6E PGE. All assessed indicators except ore grades and production volumes reveal increasing trends in the period from 2010 to 2015. It can be concluded that difficult market conditions (see part I of this paper series) and increasing environmental impacts present a challenging situation for the Southern African PGE mining industry.
URI: http://tubdok.tub.tuhh.de/handle/11420/1507
DOI: 10.15480/882.1504
ISSN: 2075-163X
Other Identifiers: doi: 10.3390/min7110225
Institute: Umwelttechnik und Energiewirtschaft V-9 
Type: (wissenschaftlicher) Artikel
Project: Open Access Publizieren 2016 - 2017 / Technische Universität Hamburg-Harburg 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
minerals-07-00225.pdf3,96 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

903
Last Week
6
Last month
23
checked on Sep 27, 2020

Download(s)

438
checked on Sep 27, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons