TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Wafer-scale fabrication of hierarchically porous silicon and silica by active nanoparticle-assisted chemical etching and pseudomorphic thermal oxidation
 
Options

Wafer-scale fabrication of hierarchically porous silicon and silica by active nanoparticle-assisted chemical etching and pseudomorphic thermal oxidation

Citation Link: https://doi.org/10.15480/882.5037
Publikationstyp
Journal Article
Date Issued
2023-06-01
Sprache
English
Author(s)
Gries, Stella Inge Martha  orcid-logo
Brinker, Manuel  orcid-logo
Zeller-Plumhoff, Berit  
Rings, Dagmar 
Krekeler, Tobias  
Longo, Elena  
Greving, Imke  
Huber, Patrick  orcid-logo
Institut
Material- und Röntgenphysik M-2  
Betriebseinheit Elektronenmikroskopie M-26  
TORE-DOI
10.15480/882.5037
TORE-URI
http://hdl.handle.net/11420/15077
Journal
Small  
Volume
19
Issue
22
Article Number
2206842
Citation
Small 19 (22): 2206842 (2023-06-01)
Publisher DOI
10.1002/smll.202206842
Scopus ID
2-s2.0-85148372334
Publisher
Wiley-VCH
Many biological materials exhibit a multiscale porosity with small, mostly nanoscale pores as well as large, macroscopic capillaries to simultaneously achieve optimized mass transport capabilities and lightweight structures with large inner surfaces. Realizing such a hierarchical porosity in artificial materials necessitates often sophisticated and expensive top-down processing that limits scalability. Here, an approach that combines self-organized porosity based on metal-assisted chemical etching (MACE) with photolithographically induced macroporosity for the synthesis of single-crystalline silicon with a bimodal pore-size distribution is presented, i.e., hexagonally arranged cylindrical macropores with 1 µm diameter separated by walls that are traversed by pores 60 nm across. The MACE process is mainly guided by a metal-catalyzed reduction–oxidation reaction, where silver nanoparticles (AgNPs) serve as the catalyst. In this process, the AgNPs act as self-propelled particles that are constantly removing silicon along their trajectories. High-resolution X-ray imaging and electron tomography reveal a resulting large open porosity and inner surface for potential applications in high-performance energy storage, harvesting and conversion or for on-chip sensorics and actuorics. Finally, the hierarchically porous silicon membranes can be transformed structure-conserving by thermal oxidation into hierarchically porous amorphous silica, a material that could be of particular interest for opto-fluidic and (bio-)photonic applications due to its multiscale artificial vascularization.
Subjects
hierarchical porosity
metal-assisted chemical etching
porous silicon
silica
silver nanoparticles
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
Projekt DEAL  
Energy harvesting via wetting/drying cycles with nanoporous electrodes  
Graduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen  
SFB 986: Teilprojekt B07 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen  
SFB 986: Teilprojekt C10 - Photonische Metamaterialien mit anpassbarer und schaltbarer Anisotropie durch Funktionalisierung von porösen Festkörpern mit Flüssigkristallen  
SFB 986: Zentralprojekt Z02 - Untersuchung multiskalig strukturierter Materialsysteme mit Synchrotron- und Neutronenstrahlung  
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Small - 2023 - Gries - Wafer‐Scale Fabrication of Hierarchically Porous Silicon and Silica by Active Nanoparticle‐Assisted.pdf

Size

2.05 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback