Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1514
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorSubrahmanyam, Raman-
dc.contributor.authorGurikov, Pavel-
dc.contributor.authorDieringer, Paul-
dc.contributor.authorSun, Miaotian-
dc.contributor.authorSmirnova, Irina-
dc.date.accessioned2018-02-06T14:09:20Z-
dc.date.available2018-02-06T14:09:20Z-
dc.date.issued2015-12-21-
dc.identifier.citationGels vol. 1(2015), 2 : pp. 291-313de_DE
dc.identifier.issn2310-2861de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1517-
dc.description.abstractAerogels are three-dimensional ultra-light porous structures whose characteristics make them exciting candidates for research, development and commercialization leading to a broad scope of applications ranging from insulation and catalysis to regenerative medicine and pharmaceuticals. Biopolymers have recently entered the aerogel foray. In order to fully realize their potential, progressive strategies dealing with production times and costs reduction must be put in place to facilitate the scale up of aerogel production from lab to commercial scale. The necessity of studying solvent/matrix interactions during solvent exchange and supercritical CO2 drying is presented in this study using calcium alginate as a model system. Four frameworks, namely (a) solvent selection methodology based on solvent/polymer interaction; (b) concentration gradient influence during solvent exchange; (c) solvent exchange kinetics based on pseudo second order model; and (d) minimum solvent concentration requirements for supercritical CO2 drying, are suggested that could help assess the role of the solvent in biopolymer aerogel production.en
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofGelsde_DE
dc.rightsCC BY 4.0de_DE
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecthydrogelde_DE
dc.subjectaerogelde_DE
dc.subjectalginatede_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleOn the road to biopolymer aerogels - dealing with the solventde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88218241-
dc.identifier.doi10.15480/882.1514-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88218241de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/1517-
tuhh.abstract.englishAerogels are three-dimensional ultra-light porous structures whose characteristics make them exciting candidates for research, development and commercialization leading to a broad scope of applications ranging from insulation and catalysis to regenerative medicine and pharmaceuticals. Biopolymers have recently entered the aerogel foray. In order to fully realize their potential, progressive strategies dealing with production times and costs reduction must be put in place to facilitate the scale up of aerogel production from lab to commercial scale. The necessity of studying solvent/matrix interactions during solvent exchange and supercritical CO2 drying is presented in this study using calcium alginate as a model system. Four frameworks, namely (a) solvent selection methodology based on solvent/polymer interaction; (b) concentration gradient influence during solvent exchange; (c) solvent exchange kinetics based on pseudo second order model; and (d) minimum solvent concentration requirements for supercritical CO2 drying, are suggested that could help assess the role of the solvent in biopolymer aerogel production.de_DE
tuhh.publisher.doi10.3390/gels1020291-
tuhh.publication.instituteThermische Verfahrenstechnik V-8de_DE
tuhh.identifier.doi10.15480/882.1514-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanThermische Verfahrenstechnik V-8de
tuhh.institute.englishThermische Verfahrenstechnik V-8de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume1de_DE
tuhh.container.startpage291de_DE
tuhh.container.endpage313de_DE
dc.rights.nationallicensefalsede_DE
local.relation.IsCorrectedBydoi:10.15480/882.1418-
local.status.inpressfalsede_DE
item.creatorGNDSubrahmanyam, Raman-
item.creatorGNDGurikov, Pavel-
item.creatorGNDDieringer, Paul-
item.creatorGNDSun, Miaotian-
item.creatorGNDSmirnova, Irina-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.creatorOrcidSubrahmanyam, Raman-
item.creatorOrcidGurikov, Pavel-
item.creatorOrcidDieringer, Paul-
item.creatorOrcidSun, Miaotian-
item.creatorOrcidSmirnova, Irina-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptEntwicklung und Modellierung neuartiger nanoporöser Materialien V-EXK2-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.deptThermische Verfahrenstechnik V-8-
crisitem.author.orcid0000-0003-0598-243X-
crisitem.author.orcid0000-0003-4503-4039-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
gels-01-00291-v2.pdf2,84 MBAdobe PDFThumbnail
View/Open
Show simple item record

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons