Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.153
Fulltext available Open Access
Title: A rational spectral problem in fluid-solid vibration
Language: English
Authors: Voß, Heinrich 
Keywords: nonlinear eigenvalue problem;maxmin principle;fluid structure interaction
Issue Date: Aug-2002
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 50
Abstract (english): In this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method.
URI: http://tubdok.tub.tuhh.de/handle/11420/155
DOI: 10.15480/882.153
Institute: Mathematik E-10 
Type: ResearchPaper
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
rep50.pdf247,33 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

241
Last Week
0
Last month
6
checked on Sep 22, 2020

Download(s)

78
checked on Sep 22, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.